
Chapter 19. Data Structures 
and Algorithm Complexity 

In This Chapter 

In this chapter we will compare the data structures we have learned so far 

by the performance (execution speed) of the basic operations (addition, 

search, deletion, etc.). We will give specific tips in what situations what data 

structures to use. We will explain how to choose between data structures 

like hash-tables, arrays, dynamic arrays and sets implemented by hash-tables 

or balanced trees. Almost all of these structures are implemented as part of 

NET Framework, so to be able to write efficient and reliable code we have 

to learn to apply the most appropriate structures for each situation. 

Why Are Data Structures So Important? 

You may wonder why we pay so much attention to data structures and 

why we review them in such a great details. The reason is we aim to make 

out of you thinking software engineers. Without knowing the basic data 

structures and computer algorithms in programming well, you cannot be good 

developers and risk to stay an amateur. Whoever knows data structures 

and algorithms well and starts thinking about their correct use has big 

chance to become a professional – one that analyzes the problems in depth 

and proposes efficient solutions. 

There are hundreds of books written on this subject. In the four volumes, 

named "The Art of Computer Programming", Donald Knuth explains 

data structures and algorithms in more than 2500 pages. Another author, 

Niklaus Wirth, has named his book after the answer to the question "why 

are data structures so important", which is "Algorithms + Data Structures 

= Programs". The main theme of the book is again the fundamental 

algorithms and data structures in programming. 

 

Data structures and algorithms are the fundamentals of 

programming. In order to become a good developer it is 

essential to master the basic data structures and algorithms 

and learn to apply them in the right way. 

To a large degree our book is focused on learning data structures and 

algorithms along with the programming concepts, language syntax and 

problem solving. We also try to illustrate them in the context of modern 

software engineering with C# and .NET Framework. 

http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs
http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs
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Algorithm Complexity 

We cannot talk about efficiency of algorithms and data structures 

without explaining the term "algorithm complexity", which we have already 

mentioned several times in one form or another. We will avoid the 

mathematical definitions and we are going to give a simple explanation of 

what the term means. 

Algorithm complexity is a measure which evaluates the order of the count 

of operations, performed by a given or algorithm as a function of the size of 

the input data. To put this simpler, complexity is a rough approximation of 

the number of steps necessary to execute an algorithm. When we evaluate 

complexity we speak of order of operation count, not of their exact count. For 

example if we have an order of N2 operations to process N elements, then 

N2/2 and 3*N2 are of one and the same quadratic order. 

Algorithm complexity is commonly represented with the O(f) notation, also 

known as asymptotic notation or “Big O notation”, where f is the function 

of the size of the input data. The asymptotic computational complexity O(f) 

measures the order of the consumed resources (CPU time, memory, etc.) by 

certain algorithm expressed as function of the input data size. 

Complexity can be constant, logarithmic, linear, n*log(n), quadratic, 

cubic, exponential, etc. This is respectively the order of constant, 

logarithmic, linear and so on, number of steps, are executed to solve a given 

problem. For simplicity, sometime instead of “algorithms complexity” or 
just “complexity” we use the term “running time”. 

 

Algorithm complexity is a rough approximation of the 

number of steps, which will be executed depending on the 

size of the input data. Complexity gives the order of steps 

count, not their exact count. 

Typical Algorithm Complexities 

This table will explain what every type of complexity (running time) means: 

Complexity Running Time Description 

constant O(1) 

It takes a constant number of steps for 

performing a given operation (for example 

1, 5, 10 or other number) and this count 

does not depend on the size of the input 

data. 

logarithmic O(log(N)) 

It takes the order of log(N) steps, where 

the base of the logarithm is most often 2, 

for performing a given operation on N 

elements. For example, if N = 1,000,000, 

an algorithm with a complexity O(log(N)) 



Chapter 19. Data Structures and Algorithm Complexity  771 

would do about 20 steps (with a constant 

precision). Since the base of the logarithm 

is not of a vital importance for the order of 

the operation count, it is usually omitted. 

linear O(N) 

It takes nearly the same amount of 

steps as the number of elements for 

performing an operation on N elements. 

For example, if we have 1,000 elements, it 

takes about 1,000 steps. Linear 

complexity means that the number of 

elements and the number of steps are 

linearly dependent, for example the 

number of steps for N elements can be 

N/2 or 3*N. 

 O(n*log(n)) 

It takes N*log(N) steps for performing a 

given operation on N elements. For 

example, if you have 1,000 elements, it 

will take about 10,000 steps. 

quadratic O(n2) 

It takes the order of N2 number of steps, 

where the N is the size of the input data, 

for performing a given operation. For 

example if N = 100, it takes about 10,000 

steps. Actually we have a quadratic 

complexity when the number of steps is in 

quadratic relation with the size of the 

input data. For example for N elements 

the steps can be of the order of 3*N2/2. 

cubic O(n3) 

It takes the order of N3 steps, where N is 

the size of the input data, for performing 

an operation on N elements. For example, 

if we have 100 elements, it takes about 

1,000,000 steps. 

exponential 
O(2n), O(N!), 

O(nk), … 

It takes a number of steps, which is with 

an exponential dependability with the 

size of the input data, to perform an 

operation on N elements. For example, if 

N = 10, the exponential function 2N has a 

value of 1024, if N = 20, it has a value of 

1 048 576, and if N = 100, it has a value 

of a number with about 30 digits. The 

exponential function N! grows even faster: 

for N = 5 it has a value of 120, for N = 10 

it has a value of 3,628,800 and for N = 20 

– 2,432,90,008,176,640,000. 



772  Fundamentals of Computer Programming with C# 

When evaluating complexity, constants are not taken into account, 

because they do not significantly affect the count of operations. Therefore an 

algorithm which does N steps and algorithms which do N/2 or 3*N 

respectively are considered linear and approximately equally efficient, 

because they perform a number of operations which is of the same order. 

Complexity and Execution Time 

The execution speed of a program depends on the complexity of the 

algorithm, which is executed. If this complexity is low, the program will 

execute fast even for a big number of elements. If the complexity is high, the 

program will execute slowly or will not even work (it will hang) for a big 

number of elements. 

If we take an average computer from 2008, we can assume that it can 

perform about 50,000,000 elementary operations per second. This 

number is a rough approximation, of course. The different processors work 

with a different speed and the different elementary operations are performed 

with a different speed, and also the computer technology constantly evolves. 

Still, if we accept we use an average home computer from 2008, we can make 

the following conclusions about the speed of execution of a given program 

depending on the algorithm complexity and size of the input data. 

Algorithm 10 20 50 100 1,000 10,000 100,000 

O(1) 
< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 
< 1 sec. < 1 sec. 

O(log(n)) 
< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 
< 1 sec. < 1 sec. 

O(n) 
< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 
< 1 sec. < 1 sec. 

O(n*log(n)) 
< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 
< 1 sec. < 1 sec. 

O(n2) 
< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 
2 sec. 3-4 min. 

O(n3) 
< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

< 1 

sec. 

20 

sec. 

5.55 

hours 

231.5 

days 

O(2n) 
< 1 

sec. 

< 1 

sec. 

260 

days 
hangs hangs hangs hangs 

O(n!) 
< 1 

sec. 
hangs hangs hangs hangs hangs hangs 

O(nn) 
3-4 

min. 
hangs hangs hangs hangs hangs hangs 

We can draw many conclusions from the above table: 
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- Algorithms with a constant, logarithmic or linear complexity are so 

fast that we cannot feel any delay, even with a relatively big size of the 

input data. 

- Complexity O(n*log(n)) is similar to the linear and works nearly as 

fast as linear, so it will be very difficult to feel any delay. 

- Quadratic algorithms work very well up to several thousand elements. 

- Cubic algorithms work well if the elements are not more than 1,000. 

- Generally these so called polynomial algorithms (any, which are not 

exponential) are considered to be fast and working well for thousands of 

elements. 

- Generally the exponential algorithms do not work well and we 

should avoid them (when possible). If we have an exponential solution 

to a task, maybe we actually do not have a solution, because it will work 

only if the number of the elements is below 10-20. Modern cryptography 

is based exactly on this – there are not any fast (non-exponential) 

algorithms for finding the secret keys used for data encryption. 

 

If you solve a given problem with an exponential complexity 

this means that you have solved it for a small amount of 

input data and generally your solution does not work. 

The data in the table is just for orientation, of course. Sometimes a linear 

algorithm could work slower than a quadratic one or a cubic algorithm 

could work faster than O(n*log(n)). The reasons for this could be many: 

- It is possible the constants in an algorithm with a low complexity to be 

big and this could eventually make the algorithm slow. For example, if 

we have an algorithm, which makes 50*n steps and another one, 

which makes 1/100*n*n steps, for elements up to 5000 the quadratic 

algorithm will be faster than the linear. 

- Since the complexity evaluation is made in the worst case scenario, it 

is possible a quadratic algorithm to work better than O(n*log(n)) in 99% 

of the cases. We can give an example with the algorithm QuickSort 

(the standard sorting algorithm in .NET Framework), which in the 

average case works a bit better than MergeSort, but in the worst case 

QuickSort can make the order of n2 steps, while MergeSort does 

always O(n*log(n)) steps. 

- It is possible an algorithm, which is evaluated to execute with a linear 

complexity, to not work so fast, because of an inaccurate complexity 

evaluation. For example if we search for a given word in an array of 

words, the complexity is linear, but at every step string comparison 

is performed, which is not an elementary operation and can take much 

more time than performing simple elementary operation (for example 

comparison of two integers). 
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Complexity by Several Variables 

Complexity can depend on several input variables at once. For example, if we 

look for an element in a rectangular matrix with sizes M and N, the 

searching speed depends on M and N. Since in the worst case we have to 

traverse the entire matrix, we will do M*N number of steps at most. Therefore 

the complexity is O(M*N). 

Best, Worst and Average Case 

Complexity of algorithms is usually evaluated in the worst case (most 

unfavorable scenario). This means in the average case they can work faster, 

but in the worst case they work with the evaluated complexity and not slower. 

Let’s take an example: searching in array. To find the searched key in the 

worst case, we have to check all the elements in the array. In the best case 

we will have luck and we will find the element at first position. In the average 

case we can expect to check half the elements in the array until we find the 

one we are looking for. Hence in the worst case the complexity is O(N) – 

linear. In the average case the complexity is O(N/2) = O(N) – linear, because 

when evaluating complexity one does not take into account the constants. In 

the best case we have a constant complexity O(1), because we make only one 

step and directly find the element. 

Roughly Estimated Complexity 

Sometimes it is hard to evaluate the exact complexity of a given 

algorithm, because it performs operations and it is not known exactly how 

much time they will take and how many operations will be done internally. 

Let’s take the example of searching a given word in an array of strings 

(texts). The task is easy: we have to traverse the array and search in every 

text with Substring() or with a regular expression for the given word. We 

can ask ourselves the question: if we had 10,000 texts, would this work fast? 

What if the texts were 100,000? If we carefully think about it, we will 

implement that in order to evaluate adequately, we have to know how big 

are the texts, because there is a difference between searching in people’s 

names (which are up to 50-100 characters) and searching in scientific articles 

(which are roughly composed by 20,000 – 30,000 characters). However, we 

can evaluate the complexity using the length of the texts, through which we 

are searching: it is at least O(L), where L is the sum of the lengths of all 

texts. This is a pretty rough evaluation, but it is much more accurate than 

complexity O(N), where N is the number of the texts, right? We should think 

whether we take into account all situations, which could occur. Does it matter 

how long the searched word is? Probably searching of long words is slower 

than searching of short words. In fact things are slightly different. If we 

search for "aaaaaaa" in the text "aaaaaabaaaaacaaaaaabaaaaacaaaaab", this 

will be slower than if we search for "xxx" in the same text, because in the first 

case we will get more sequential matches than in the second case. Therefore, 
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in some special situations, searching seriously depends on the length of the 

word we search and the complexity O(L) could be underestimated. 

Complexity by Memory 

Besides the number of steps using a function of the input data, one can 

measure other resources, which an algorithm uses, for example memory, 

count of disk operations, etc. For some algorithms the execution speed is not 

as important as the memory they use. For example if a given algorithm is 

linear but it uses RAM in the order of N2, it will be probably shortage of 

memory if N = 100,000 (then it will need memory in order of 9 GB RAM), 

despite the fact that it should work very fast. 

Estimating Complexity – Examples 

We are going to give several examples, which show how you can estimate 

the complexity of your algorithms, and decide whether the code written by 

you will work fast: 

If we have a single loop from 1 to N, its complexity is linear – O(N): 

int FindMaxElement(int[] array) 
{ 
 int max = int.MinValue; 
 for (int i = 1; i < array.Length; i++) 
 { 
  if (array[i] > max) 
  { 
   max = array[i]; 
  } 
 } 
 return max; 
} 

This code will work well even if the number of elements is huge. 

If we have two of nested loops from 1 to N, their complexity is quadratic 

– O(N2). Example: 

int FindInversions(int[] array) 
{ 
 int inversions = 0; 
 for (int i = 0; i < array.Length - 1; i++) 
 { 
  for (int j = i + 1; j < array.Length; j++) 
  { 
   if (array[i] > array[j]) 
   { 
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    inversions++; 
   } 
  } 
 } 
 return inversions; 
} 

If the elements are no more than several thousand or tens of thousands, this 

code will work well. 

If we have tree nested loops from 1 to N, their complexity is cubic – 

O(N3). Example: 

long Sum3(int n) 
{ 
 long sum = 0; 
 for (int a = 1; a < n; a++) 
 { 
  for (int b = 1; b < n; b++) 
  { 
   for (int c = 1; c < n; c++) 
   { 
    sum += a * b * c; 
   } 
  } 
 } 
 return sum; 
} 

This code will work well if the number of elements is below 1,000. 

If we have two nested loops from 1 to N and from 1 to M respectively, 

their complexity will be quadratic – O(N*M). Example: 

long SumMN(int n, int m) 
{ 
 long sum = 0; 
 for (int x = 1; x <= n; x++) 
 { 
  for (int y = 1; y <= m; y++) 
  { 
   sum += x * y; 
  } 
 } 
 return sum; 
} 
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The speed of this code depends on two variables. The code will work well if 

M, N < 10,000 or if at least the one variable has a value small enough. 

We should pay attention to the fact that not always tree nested loops mean 

cubic complexity. Here is an example in which the complexity is O(N*M): 

long SumMN(int n, int m) 
{ 
 long sum = 0; 
 for (int x = 1; x <= n; x++) 
 { 
  for (int y = 1; y <= m; y++) 
  { 
   if (x == y) 
   { 
    for (int i = 1; i <= n; i++) 
    { 
     sum += i * x * y; 
    } 
   } 
  } 
 } 
 return sum; 
} 

In this example the most inner loop executes exactly min(M, N) times and 

does not significantly affect the algorithm speed. The outer code executes 

approximately N*M + min(M,N)*N steps, i.e. its complexity is quadratic. 

When using a recursion, the complexity is more difficult to be 

estimated. Here is an example: 

long Factorial(int n) 
{ 
 if (n == 0) 
 { 
  return 1; 
 } 
 else 
 { 
  return n * Factorial(n - 1); 
 } 
} 

In this example the complexity is obviously linear – O(N), because the 

function Factorial() executes exactly once for each of the numbers 1 … n. 
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Here is a recursive function for which it is very difficult to estimate the 

complexity: 

long Fibonacci(int n) 
{ 
 if (n == 0) 
 { 
  return 1; 
 } 
 else if (n == 1) 
 { 
  return 1; 
 } 
 else 
 { 
  return Fibonacci(n - 1) + Fibonacci(n - 2); 
 } 
} 

If we write down what really happens when the upper code executes, we will 

see that the function calls itself as many times as the Fibonacci’s n+1 number 

is. We can roughly evaluate the complexity by another way too: since on 

every step of the function execution 2 recursive calls are done in average, the 

count of the recursive calls must be in order of 2n, i.e. we have an 

exponential complexity. This automatically means that for values greater 

than 20-30 the function will "hang". You may check this yourself. 

The same function for calculating the nth number of Fibonacci can be 

written with a linear complexity in the following way: 

long Fibonacci(int n) 
{ 
 long fn = 1; 
 long fn1 = 1; 
 long fn2 = 1; 
 for (int i = 2; i < n; i++) 
 { 
  fn = fn1 + fn2; 
  fn2 = fn1; 
  fn1 = fn; 
 } 
 return fn; 
} 

You see that the complexity estimation helps us to predict whether a given 

code will work slowly before we have run it and it implies we should look 

for a more efficient solution. 
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Comparison between Basic Data Structures 

After you have been introduced to the term algorithm complexity, we are now 

ready to make a comparison between the basic data structures, which 

we know from the last few chapters, and to estimate with what complexity 

each of them performs the basic operations like addition, searching, 

deletion and access by index (when applicable). In that way we could 

easily judge according to the operations we expect to need, which structure 

would be the most appropriate. The complexities of the basic operations 

on the basic data structures, which we have reviewed in the previous 

chapters, are given in the table below: 

Data structure Addition Search Deletion 
Access 

by index 

Array (T[]) O(N) O(N) O(N) O(1) 

Linked list (LinkedList<T>) O(1) O(N) O(N) O(N) 

Dynamic array (List<T>) O(1) O(N) O(N) O(1) 

Stack (Stack<T>) O(1) - O(1) - 

Queue (Queue<T>) O(1) - O(1) - 

Dictionary, implemented 

with a hash-table 

(Dictionary<K, T>) 
O(1) O(1) O(1) - 

Dictionary, implemented 

with a balanced search tree 

(SortedDictionary<K, T>) 
O(log(N)) O(log(N)) O(log(N)) - 

Set, implemented with a 

hash-table (HashSet<T>) 
O(1) O(1) O(1) - 

set, implemented with a 

balanced search tree 

(SortedSet<T>) 
O(log(N)) O(log(N)) O(log(N)) - 

We let the reader to think about how these complexities were estimated. 

When to Use a Particular Data Structure? 

Let’s skim through all the structures in the table above and explain in what 

situations we should use them as well as how their complexities are 

evaluated. 

Array (T[]) 

The arrays are collections of fixed number of elements from a given type 

(for example numbers) where the elements preserved their order. Each 
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element can be accessed through its index. The arrays are memory areas, 

which have a predefined size. 

Adding a new element in an array is a slow operation. To do this we have 

to allocate a memory with the same size plus one and copy all the data from 

the original array to the new one. 

Searching in an array takes time because we have to compare every 

element to the searched value. It takes N/2 comparisons in the average case. 

Removing an element from an array is a slow operation. We have to 

allocate a memory with the same size minus one and copy all the old 

elements except the removed one. 

Accessing by index is direct, and thus, a fast operation. 

The arrays should be used only when we have to process a fixed number of 

elements to which we need a quick access by index. For example, if we 

have to sort some numbers, we can keep them in an array and then apply 

some of the well-known sorting algorithms. If we have to change the 

elements' count, the array is not the correct data structure we should use. 

 

Use arrays when you have to process a fixed number of 

elements to which you need an access through index. 

Singly / Doubly Linked List (LinkedList<T>) 

Singly and doubly linked lists hold collection of elements, which preserve 

their order. Their representation in the memory is dynamic, pointer-based. 

They are linked sequences of element. 

Adding is a fast operation but it is a bit slower than adding to a List<T> 

because every time when we add an element to a linked list we allocate a new 

memory area. The memory allocation works at speed, which cannot be easily 

predicted. 

Searching in a linked list is a slow operation because we have to traverse 

through all of its elements. 

Accessing an element by index is a slow operation because there is no 

indexing in singly and doubly linked lists. You have to go through all the 

elements from the start one by one instead. 

Removing an element at a specified index is a slow operation because 

reaching the element through its index is a slow operation. Removing an 

element with a specified value is a slow operation too, because it involves 

searching. 

Linked list can quickly add and remove elements (with a constant 

complexity) at its two ends (head and tail). Hence, it is very handy for an 

implementation of stacks, queues and similar data structures. 
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Linked lists are rarely used in practice because the dynamic arrays 

(List<T>) can do almost exact same operations LinkedList does, plus for 

the most of them it works faster and more comfortable. 

When you need a linked list, use List<T> instead of LinkedList<T>, because 

it doesn’t work slower and it gives you better speed and flexibility. Use 

LinkedList when you have to add and remove elements at both ends of 

the data structure. 

 

When you need to add and remove elements at both ends of 

the list, use LinkedList<T>. Otherwise use List<T>. 

Dynamic Array (List<T>) 

Dynamic array (List<T>) is one of the most popular data structures used 

in programming. It does not have fixed size like arrays, and allows direct 

access through index, unlike linked lists (LinkedList<T>). The dynamic array 

is also known as "array list", "resizable array" and "dynamic array". 

List<T> holds its elements in an array, which has a bigger size than the 

count of the stored elements. Usually when we add an element, there is an 

empty cell in the list’s inner array. Therefore this operation takes a constant 

time. Occasionally the array has been filled and it has to expand. This takes 

linear time, but it rarely happens. If we have a large amount of additions, the 

average-case complexity of adding an element to List<T> will a constant – 

O(1). If we sum the steps needed for adding 100,000 elements (for both 

cases – "fast add" and "add with expand") and divide by 100,000, we will 

obtain a constant which will be nearly the same like for adding 1,000,000 

elements. 

This statistically-averaged complexity calculated for large enough amount of 

operations is called amortized complexity. Amortized linear complexity 

means that if we add 10,000 elements consecutively, the overall count of 

steps will be of the order of 10,000. In most cases add it will execute in a 

constant time, while very rarely adding will execute in linear time. 

Searching in List<T> is a slow operation because you have to traverse 

through all the elements. 

Removing by index or value executes in a linear time. It is a slow 

operation because we have to move all the elements after the deleted one 

with one position to the left. 

The indexed access in List<T> is instant, in a constant time, since the 

elements are internally stored in an array. 

Practically List<T> combines the best of arrays and lists, for which it is a 

preferred data structure in many situations. For example if we have to 

process a text file and to extract from it all words (with duplicates), which 
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match a regular expression, the most suitable data structure in which we can 

accumulate them is List<T>, because we need a list, the length of which is 

unknown in advance and can grow dynamically. 

The dynamic array (List<T>) is appropriate, when we have to add elements 

frequently as well as keeping their order of addition and access them through 

index. If we often we have to search or delete elements, List<T> is not the 

right data structure. 

 

Use List<T>, when you have to add elements quickly and 

access them through index. 

Stack 

Stack is a linear data structure in which there are 3 operations defined: 

adding an element at the top of the stack (push), removing an element from 

the top of the stack (pop) and inspect the element from the top without 

removing it (peek). All these operations are very fast – it takes a constant 

time to execute them. The stack does not support the operations search and 

access through index. 

The stack is a data structure, which has a LIFO behavior (last in, first out). 

It is used when we have to model such a behavior – for example, if we have 

to keep the path to the current position in a recursive search. 

 

Use a stack when you have to implement the behavior "last 

in, first out" (LIFO). 

Queue 

Queue is a linear data structure in which there are two operations defined: 

adding an element to the tail (enqueue) and extract the front-positioned 

element from the head (dequeue). These two operations take a constant 

time to execute, because the queue is usually implemented with a linked list. 

We remind that the linked list can quickly add and remove elements from its 

both ends. 

The queue’s behavior is FIFO (first in, first out). The operations searching 

and accessing through index are not supported. Queue can naturally model a 

list of waiting people, tasks or other objects, which have to be processed in 

the same order as they were added (enqueued). 

As an example of using a queue we can point out the implementation of the 

BFS (breadth-first search) algorithm, in which we start from an initial 

element and all its neighbors are added to a queue. After that they are 

processed in the order they were added and their neighbors are added to the 

queue too. This operation is repeated until we reach the element we are 

looking for or we process all elements. 
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Use a queue when you have to implement the behavior "first 

in, first out" (FIFO). 

Dictionary, Implemented with a Hash-Table 
(Dictionary<K, T>) 

The data structure "dictionary" suggests storing key-value pairs and 

provides a quick search by key. The implementation with a hash table (the 

class Dictionary<K,T> in .NET Framework) has a very fast add, search 

and remove of elements – constant complexity at the average case. The 

operation access through index is not available, because the elements in the 

hash-table have no order, i.e. an almost random order. 

Dictionary<K,T> keeps internally the elements in an array and puts every 

element at the position calculated by the hash-function. Thus the array is 

partially filled – in some cells there is a value, others are empty. If more than 

one element should be placed in a single cell, elements are stored in a linked 

list. It is called chaining. This is one of the few ways to resolve the collision 

problem. When the load factor exceeds 75%, the size is doubled and all the 

elements occupy new positions. This operation has a linear complexity, but it 

is executed so rarely, that the amortized complexity remains a constant. 

Hash-table has one peculiarity: if we choose a bad hash-function causing 

many collisions, the basic operations can become very inefficient and reach 

linear complexity. In practice, however, this hardly happens. Hash-table is 

considered to be the fastest data structure, which provides adding and 

searching by key. 

Hash-table in .NET Framework permits each key to be put only once. If we 

add two elements with the same key consecutively, the last will replace the 

first and we will eventually lose an element. This important feature should be 

considered. 

From time to time one key will have to keep multiple values. This is not 

standardly supported but we can store the values matching this key in a 
List<T> as a sequence of elements. For example if we need a hash-table 

Dictionary<int, string>, in which to accumulate pairs {integer, string} 

with duplicates, we can use Dictionary<int, List<string>>. Some external 

libraries have ready to use data structure called MultiDictionary<K,V>. 

Hash-table is recommended to be used every time we need fast addition 

and fast search by key. For example if we have to count how many times 

each word is encountered in a set of words in a text file, we can use 

Dictionary<string, int> – the key will be a particular word, the value – 

how many times we have seen it. 

 

Use a hash-table, when you want to add and search by key 

very fast. 
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A lot of programmers (mostly beginners) live with the delusion the main 

advantage of using a hash-table is the comfort of searching a value by its 

key. Actually this is wrong. We can implement searching a key with an array, 

a list or even a stack. There is no problem, everyone can build it. We can 

define a class Entry, which holds a key-value pair and after that we will work 

with an array or a list with Entry elements. We can implement the search but 

by any circumstances it will work slowly. This is the big problem with lists and 

arrays – they do not offer a fast search. Unlike them the hash-table can 

search and add new elements very fast. 

 

The main advantage of the hash-table over the other data 

structures is a very quick searching and addition. The 

comfort for the developers is a secondary factor. 

Dictionary, Implemented with a Balanced Tree 

(SortedDictionary<K,T>) 

The implementation of the data structure "dictionary" as a red-black tree 

(the class SortedDictionary<K,T>) is a structure storing key-value pairs 

where keys are ordered increasingly (sorted). The structure provides a fast 

execution of basic operations (add an element, search by key and remove an 

element). The complexity of these operations is logarithmic – O(log(N)). 

Thus, it will take 10 steps for add / search / remove when the dictionary holds 

1,000 elements and 20 steps in case of 1,000,000 elements. 

Unlike hash-tables, where we can reach linear complexity if we pick a bad 

hash-function, in SortedDictionary<K,T> the count of the steps of the basic 

operations in the average and worst case are the same – log2(N). When we 

work with balanced trees, there is no hashing, no collisions and no risk of 

using a bad hash-function. 

Again, as in the hash-tables, one key can be stored at most once in the 

structure. If we want to associate several values with one key, we should use 

some kind of a list for the values, for example List<T>. 

SortedDictionary<K,T> holds internally its values in a red-black balanced 

tree ordered by key. This means if we traverse the structure (using its 

iterator or foreach loop in C#) we will get the elements sorted in ascending 

order by key. Sometimes this can be very useful property. 

Use SortedDictionary<K,T> when you need a structure which can add, 

search and remove an element fast and you also need to extract the elements 

sorted in ascending order. In general Dictionary<K,T> works a bit faster 

than SortedDictionary<K,T> and is preferable. 

As an example of using a SortedDictionary<K,T>, we can give the following 

task: find all the words in a text file, which occur exactly 10 times, and 

print them alphabetically. This is a task that we can solve as successful 

with Dictionary<K,T> too, but we will have to do an additional sorting at the 
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end. For the solution of this task we can use SortedDictionary<string, 

int> and to traverse through all the words in the text file. For each word we 

will keep in the sorted dictionary how many times we have encountered it. 

After that we can go through all the elements in the dictionary and print those 

words, which have been encountered exactly 10 times. They will be 

alphabetically ordered, since this is the natural internal order of the sorted 

dictionary data structure. 

 

Use SortedDictionary<K,T> when you want fast addition of 

elements and searching by key as well as the elements to be 

sorted by key. 

Set, Implemented with a Hash-Table (HashSet<T>) 

The data structure "set" is a collection of elements with no duplicates. 

The basic operations are adding an element to the set, checking if an element 

belongs to the set (searching) and removing an element from the set. The 

operation searching through index is not supported, i.e. we do not have a 

direct access to the elements via ordering number, because in this structure 

there is not any order. 

Set, implemented with a hash-table (the class HashSet<T>) is a special case 

of a hash-table, in which we have only keys. The values associated with these 

keys do not matter. 

As in the hash-table, the basic operations in the data structure HashSet<T> 

are implemented with a constant complexity O(1). Another similarity to 

hash-table is if we choose a bad hash-function, we can reach a linear 

complexity executing the basic operations. Fortunately in practice this almost 

never happens. 

As an example of using a HashSet<T>, we can point out the task of finding all 

the different words in a text file. 

 

Use HashSet<T>, when you have to quickly add elements to a 

set and check whether a given element belongs to a set. 

Set, Implemented with a Balanced Tree 
(SortedSet<T>) 

The data structure set, implemented with a red-black tree, is a special case of 

SortedDictionary<K,T> in which keys and values coincide. 

Similar to SortedDictionary<K,T>, the basic operations in SortedSet<T> are 

executed with logarithmic complexity O(log(N)), which is the same in the 

average and worst case. 
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As an example of using a SortedSet<T> we can point out the task of finding 

all the different words in a given text file and printing them alphabetically 

ordered. 

 

Use SortedSet<T>, when you have to quickly add an element 

to a set and check whether given element belongs to the set 

as well as need all the elements sorted in ascending order. 

Choosing a Data Structure – Examples 

We are going to show several problems, where the choice of an appropriate 

data structure is crucial to the efficiency of their solution. The purpose of this 

is to show you typical situations, in which the reviewed data structures are 

used and to teach you in what scenarios what data structures you should use. 

Generating Subsets 

It is given a set of strings S. For example S = {ocean, beer, money, 

happiness}. The task is to write a program, which prints all subsets of S. 

The problem has many and different solutions, but we are going to focus on 

the following one: We start from the empty set (with 0 elements): 

{} 

We add to it every element of S and we get a collection of subsets with one 

element: 

{ocean}, {beer}, {money}, {happiness} 

To each of the one-elemental subsets we add every element from S, which 

has not been added yet to the corresponding subset and now we have all two-

elemental subsets: 

{ocean, beer}, {ocean, money}, {ocen, happiness}, {beer, money}, 
{beer, happiness}, {money, happiness} 

If we keep on the same way, we will get all 3-elemental subsets and after 

that all 4-elemental etc. to the N-elemental subsets. 

How to implement this algorithm? We have to choose appropriate data 

structures, right? 

We can start with the data structure keeping the initial set of elements S. It 

can be an array, linked list, dynamic array (List<string>) or set, imple-

mented as SortedSet<string> or HashSet<string>. To answer the question 

which structure is the most appropriate, let’s think of which are the operations 

we are going to do on this structure. We can think of only one operation – 
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traversing through all the elements of S. This operation can be implemented 

efficiently with any of these structures. We choose an array because it is the 

simplest data structure of all and it is easy to work with. 

The next step is to pick a structure in which we will store one of the 

subsets we generate, for example {ocean, happiness}. Again we ask 

ourselves the question what are the operations we execute on this subset of 

words. The operations are a check whether an element exists and an addition 

of an element, right? Which data structure quickly implements both opera-

tions? The arrays and lists do not search quickly, dictionaries store key-value 

pairs, which is not our case. Almost no options are left, so we are going to see 

what the data structure set offers. It supports a quick searching and addition. 

Which implementation to choose – SortedSet<string> or HashSet<string>? 

We do not have a requirement to sort the words in alphabetical order, so we 

choose the faster implementation – HashSet<string>. 

Lastly, we will choose one more data structure in which we are going to keep 

the collection of the subsets of words, for example: 

{ocean, beer}, {sea, money}, {sea, happiness}, {beer, money}, 
{beer, happiness}, {money, happiness} 

Using this structure we have to be able to add as well as traverse through all 

its elements consecutively. The following structures meet the requirements: 

list, stack, queue and set. In each of them we can add quickly and go 

through its elements. If we examine the algorithm for generating subsets, we 

will notice each is processed in style: "first generated, first processed". 

The subset, which had been firstly generated, has been firstly processed and 

subsets with one more element have been generated from it, right? Therefore 

our algorithm will most accurately fit the data structure queue. We can 

describe the algorithm as follows: 

1. We start with a queue, containing the empty set {}. 

2. We dequeue an element called subset and try to add each element from 

S which subset does not contain. The result is a set, which we enqueue. 

3. We repeat step 2 until the queue becomes empty. 

You can see how a few thoughts brought us to the classical algorithm 

"breadth-first search" (BFS). Once we know what data structures we 

should use, implementation is quick and easy. Here is how it might look: 

string[] words = {"ocean", "beer", "money", "happiness"}; 
Queue<HashSet<string>> subsetsQueue = 
 new Queue<HashSet<string>>(); 
HashSet<string> emptySet = new HashSet<string>(); 
subsetsQueue.Enqueue(emptySet); 
while (subsetsQueue.Count > 0) 
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{ 
 HashSet<String> subset = subsetsQueue.Dequeue(); 
 
 // Print current subset 
 Console.Write("{ "); 
 foreach (string word in subset) 
 { 
  Console.Write("{0} ", word); 
 } 
 Console.WriteLine("}"); 
 
 // Generate and enqueue all possible child subsets 
 foreach (string element in words) 
 { 
  if (! subset.Contains(element)) 
  { 
   HashSet<string> newSubset = new HashSet<string>(); 
   newSubset.UnionWith(subset); 
   newSubset.Add(element); 
   subsetsQueue.Enqueue(newSubset); 
  } 
 } 
} 

If we execute the code above, we will see that it successfully generates all 

subsets of S, but some of them are generated twice. 

{ } 
{ ocean } 
{ beer } 
{ money } 
{ happiness } 
{ ocean beer } 
{ ocean money } 
{ ocean happiness } 
{ beer ocean } 
… 

In the example the subsets { ocean beer } and { beer ocean } are actually 

one and the same subset. It seems we have not thought of duplicates, which 

occur when we mix the order of elements in the same subset. How can we 

avoid duplicates? 

Let’s associate the words by their indices. 

ocean  0 
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beer  1 

money  2 

happiness  3 

Since the subsets {1, 2, 3} and {2, 1, 3} are actually one and a same subset, 

in order to avoid duplicates, we are going to impose a requirement to 

generate only subsets, in which the indices are in ascending order. Instead 

of subsets of words we can keep subsets of indices, right? In these subsets of 

indices we need two operations: adding an index and getting the biggest 

index so we can add only indices bigger than it. Obviously we do not need 

HashSet<T> anymore, but we can successfully use List<T>, in which the 

elements are ordered in ascending order by index and the biggest element is 

naturally placed last. 

Finally, our algorithm looks something like this: 

1. Let N be the number of elements in S. We start with a queue, 

containing the empty set {}. 

2. We dequeue an element called subset. Let start be the biggest index 

in subset. We add to subset all indices, which are bigger than start 

and smaller than N. As a result we get several new subsets, which we 

enqueue. 

3. Repeat step 2 until the queue is empty. 

Here is how the implementation of the new algorithm looks like: 

using System; 
using System.Collections.Generic; 
 
public class Subsets 
{ 
 static string[] words = { "ocean", "beer", "money", 
  "happiness" }; 
 
 static void Main() 
 { 
  Queue<List<int>> subsetsQueue = new Queue<List<int>>(); 
  List<int> emptySet = new List<int>(); 
  subsetsQueue.Enqueue(emptySet); 
  while (subsetsQueue.Count > 0) 
  { 
   List<int> subset = subsetsQueue.Dequeue(); 
   Print(subset); 
   int start = -1; 
   if (subset.Count > 0) 
   { 
    start = subset[subset.Count - 1]; 
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   } 
   for (int i = start + 1; i < words.Length; i++) 
   { 
    List<int> newSubset = new List<int>(); 
    newSubset.AddRange(subset); 
    newSubset.Add(i); 
    subsetsQueue.Enqueue(newSubset); 
   } 
  } 
 } 
 
 static void Print(List<int> subset) { 
  Console.Write("[ "); 
  for (int i=0; i<subset.Count; i++) { 
   int index = subset[i]; 
   Console.Write("{0} ", words[index]); 
  } 
  Console.WriteLine("]"); 
 } 
} 

If we run the program we will get the following correct result: 

[ ] 
[ ocean ] 
[ beer ] 
[ money ] 
[ happiness ] 
[ ocean beer ] 
[ ocean money ] 
[ ocean happiness ] 
[ beer money ] 
[ beer happiness ] 
[ money happiness ] 
[ ocean beer money ] 
[ ocean beer happiness ] 
[ ocean money happiness ] 
[ beer money happiness ] 
[ ocean beer money happiness ] 

Sorting Students 

It is given a text file, containing the data of a group of students and 

courses which they attend, separated by |. The file looks like this: 
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Chris | Jones | C# 
Mia | Smith | PHP 
Chris | Jones | Java 
Peter | Jones | C# 
Sophia | Wilson | Java 
Mia | Wilson | C# 
Mia | Smith | C# 

Write a program printing all courses and the students, who have joined 

them, ordered by last name, and then by first name (if the last names 

match). 

We can implement the problem using a hash-table, which will hold a list of 

students by a course name. We are choosing a hash-table, because we can 

quickly search by course name in it. 

In order to meet the requirements for an order by name and surname, we are 

going to sort the particular list of students from each course, before we 

print it. Another option is to use SortedSet<T> for the students attending 

each course (because it is internally sorted), but since one can have students 

with the same name, we have to use SortedSet<List<String>>. It becomes 

too complicated. We choose the easier way – using List<Student> and 

sorting it before we print it. 

In any case we will have to implement the IComparable interface so we can 

define the order of the elements of type Student according to the task 

requirements. It is important to firstly compare the family names and if they 

are the same to compare the first names. We remind that in order to sort the 

elements of a given class it is explicitly necessary to define the logic of their 

order. In .NET Framework this is done by the IComparable<T> interface (or 

through lambda functions like we shall see in the chapter “Lambda 
Expressions and LINQ”). Let’s define the class Student and implement 

IComparable<Student>. We get something like this: 

public class Student : IComparable<Student> 
{ 
 private string firstName; 
 private string lastName; 
 
 public Student(string firstName, string lastName) 
 { 
  this.firstName = firstName; 
  this.lastName = lastName; 
 } 
 
 public int CompareTo(Student student) 
 { 
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  int result = lastName.CompareTo(student.lastName); 
  if (result == 0) 
  { 
   result = firstName.CompareTo(student.firstName); 
  } 
  return result; 
 } 
 
 public override String ToString() 
 { 
  return firstName + " " + lastName; 
 } 
} 

Now we are able to write the code, which reads the students and their 

courses and stores them in a hash-table, which keeps a list of students 

by a course name (Dictionary<string, List<Student>>). And then it is 

easy – we iterate over the courses, sort the students and print them: 

// Read the file and build the hash-table of courses 
Dictionary<string, List<Student>> courses = 
 new Dictionary<string, List<Student>>(); 
StreamReader reader = new StreamReader("Students.txt"); 
using (reader) 
{ 
 while (true) 
 { 
  string line = reader.ReadLine(); 
  if (line == null) 
  { 
   break; 
  } 
  string[] entry = line.Split(new char[] { '|' }); 
  string firstName = entry[0].Trim(); 
  string lastName = entry[1].Trim(); 
  string course = entry[2].Trim(); 
  List<Student> students; 
  if (! courses.TryGetValue(course, out students)) 
  { 
   // New course -> create a list of students for it 
   students = new List<Student>(); 
   courses.Add(course, students); 
  } 
  Student student = new Student(firstName, lastName); 
  students.Add(student); 
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 } 
} 
 
// Print the courses and their students 
foreach (string course in courses.Keys) 
{ 
 Console.WriteLine("Course " + course + ":"); 
 List<Student> students = courses[course]; 
 students.Sort(); 
 foreach (Student student in students) 
 { 
  Console.WriteLine("\t{0}", student); 
 } 
} 

The above code first parses all the lines consecutively by splitting them by a 

vertical bar "|". Secondly it cleans the spaces from the beginning and the end. 

After storing every student’s information, it is checked in the hash-table 

whether its course exists. If the course has been found, the student is added 

to the list of the students of this course. Otherwise, a new list is created and 

the student is added to it. Then the list is added in the hash-table using the 

course name as a key. 

Printing the courses and students is not difficult. All keys are extracted 

from the hash-table. These are the names of the courses. For each course its 

students' list is extracted, sorted and printed. The sorting is made by the 

built-in method Sort() using the comparison method CompareTo(…) from the 

interface IComparable<T> as defined in the class Student (comparison firstly 

by family name, and if they are the same, comparison by first name). At the 

end the sorted students are printed by the overridden virtual method 

ToString(). Here is how the output of the upper program looks: 

Course C#: 
        Chris Jones 
        Peter Jones 
        Mia Smith 
        Mia Wilson 
Course PHP: 
        Mia Smith 
Course Java: 
        Chris Jones 
        Sophia Wilson 
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Sorting a Phone Book 

It is given a text file, containing people’s names, their city names and 

phone numbers. The file looks like this: 

Kenneth | Virginia Beach | 1-541-754-3010 
Paul    | San Antonio    | 1-535-675-6745 
Mary    | Portland       | 1-234-765-1983 
Laura   | San Antonio    | 1-454-345-2345 
Donna   | Virginia Beach | 1-387-387-2389 

Write a program which prints all the city names in an alphabetical order 

and for each one of them prints all people’s names in alphabetical order 

and their corresponding phone number. 

The problem can be solved in many ways, for example we sort by two criteria: 

firstly by city name and secondly by person name and then we print the 

phone book. 

However, let’s solve the problem without sorting, but by using the standard 

data structures in .NET Framework. We want the city names to be sorted. This 

means that it is best to use a data structure, which internally keeps the 

elements sorted. Such as, for example, a balanced search tree – 

SortedSet<T> or SortedDictionary<K,T>. Since every record from the 

phone book contains beside a city name – other data, it is more convenient to 

have a SortedDictionary<K,T>, which keeps a list of people’s names and 

their phone numbers. We want the list of the people’s names from every city 

to be sorted in alphabetical order by name. Hence, we can use the data 

structure SortedDictionary<K,T> again. The key will be the name of the 

person and its value will be his phone number. 

At the end we get the nested structure SortedDictionary<string, 
SortedDictionary<string, string>>. Here is a sample implementation, 

which shows how we can solve the problem using this structure: 

// Read the file and build the phone book 
SortedDictionary<string, SortedDictionary<string, string>> 
 phonesByTown = new SortedDictionary<string, 
  SortedDictionary<string, string>>(); 
StreamReader reader = new StreamReader("PhoneBook.txt"); 
using (reader) 
{ 
 while (true) 
 { 
  string line = reader.ReadLine(); 
  if (line == null) 
  { 
   break; 
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  } 
  string[] entry = line.Split(new char[]{'|'}); 
  string name = entry[0].Trim(); 
  string town = entry[1].Trim(); 
  string phone = entry[2].Trim(); 
 
  SortedDictionary<string, string> phoneBook; 
  if (! phonesByTown.TryGetValue(town, out phoneBook)) 
  { 
   // This town is new. Create a phone book for it 
   phoneBook = new SortedDictionary<string, string>(); 
   phonesByTown.Add(town, phoneBook); 
  } 
  phoneBook.Add(name, phone); 
 } 
} 
 
// Print the phone book by towns 
foreach (string town in phonesByTown.Keys) 
{ 
 Console.WriteLine("Town " + town + ":"); 
 SortedDictionary<string, string> phoneBook = 
  phonesByTown[town]; 
 foreach (var entry in phoneBook) 
 { 
  string name = entry.Key; 
  string phone = entry.Value; 
  Console.WriteLine("\t{0} - {1}", name, phone); 
 } 
} 

If we execute this sample code with input – the sample phone book, we will 

get the expected result: 

Town Portland: 
        Mary - 1-234-765-1983 
Town San Antonio: 
        Laura - 1-454-345-2345 
        Paul - 1-535-675-6745 
Town Virginia Beach: 
        Donna - 1-387-387-2389 
        Kenneth - 1-541-754-3010 
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Searching in a Phone Book 

Here is another problem, so we can strengthen the way, in which we think in 

order to choose appropriate data structures. A phone book is stored in a 

text file, containing names of people, their city names and phone 

numbers. People’s names can be in the format first name or nickname or 

first name + last name or first name + surname + last name. The file could 

have the following look: 

Kevin Clark       | Virginia beach | 1-454-345-2345 
Skiller           | San Antonio    | 1-566-533-2789 
Kevin Clark Jones | Portland       | 1-432-556-6533 
Linda Johnson     | San Antonio    | 1-123-345-2456 
Kevin             | Phoenix        | 1-564-254-4352 
Kevin Garcia      | Virginia Beach | 1-445-456-6732 
Kevin             | Phoenix        | 1-134-654-7424 

It is possible several people to be given under the same name or even the 

same city. It is possible someone to have several phone numbers. In this 

case he is given several times in the input file. Phone book could be huge 

(up to 1,000,000 records). 

A file holding a sequence of queries is given. The queries are two types: 

- Search by name / nickname / surname / last name. The query 

looks like this: list(name). 

- Search by name / nickname / surname / last name + city name. 

The query looks like this: find(name, town). 

Here is a sample query file: 

list(Kevin) 
find(Angel, San Antonio) 
list(Linda) 
list(Clark) 
find(Jones, Phoenix) 
list(Grandma) 

Write a program, which by given phone book and query file executes and 

respond to all the queries. For each query a list of records in the phone 

book has to be printed or the message "Not found", if the query cannot find 

anything. Queries could be a large number, for example 50,000. 

This problem is not as easy as the previous ones. One easy to implement 

solution could be to scan the entire phone book for every query and 

extract all records in which there is a match with the searched information. 

But this will work slowly, because the records and queries could be a lot. It 

is necessary to find a way for a quick search without scanning the entire 

phone book every time. 
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In paper phone books the numbers are given by the people’s name, sorted 

in alphabetical order. Sorting will not help us, because someone can search 

by first name, other – by last name, third – by nickname and city name. We 

have to search by any of the above at the same time. The question is how do 

we do it? 

If we think a bit it will occur to us that the problem requires searching by 

any of the words, which can be seen at the first column of the phone book 

and eventually by the combination of a word from the first column and a town 

from the second one. We know that the fastest search is implemented with a 

hash-table. So far so good, but what are we going to keep as a key and 

value in the hash-table? 

What if we use several hash-tables: one for searching a word from the first 

column, another for searching in the second column, third for searching by 

city and so on? If we think a bit more, we will ask ourselves the question – 

why do we need several hash-tables? Can’t we search in one common 

hash-table? If we have a name "Peter Jones", we will store his phone 

number under the keys "Peter" and "Jones". If someone searches by any of 

these keys, he will find Peter’s phone number. 

So far so good, but how do we search by both first name and city name, 

for example "Peter from Virginia Beach"? It is possible firstly to find all with a 

name "Peter" and then to print those who are from Virginia Beach. This will 

work, but if there are a lot of people named Peter, searching will work slowly. 

Then why don’t we make a hash-table with a key name of a person and 

value another hash-table, which by city name will return a list of phone 

numbers? This could work. We have done something similar in the previous 

task, haven’t we? 

Can we come up with something smarter? Can’t we just put the phone 

numbers of all the people named Peter from Virginia Beach under a key 

"Peter from Virginia Beach" in the main hash-table in the phone book? It 

seems this could solve our problem and we will use only one hash-table for all 

the queries. 

Using the last idea, we could invent the following algorithm: we read line by 

line from the phone book and for each word from the name of a person 

d1, d2, …, dk and for each city name t we make new records in the 

phonebook hash-table by the following keys: d1, d2, …, dk, "d1 from t", 

"d2 from t", …, "dk from t". Now it is guaranteed we could search by any of 

a person’s names as well as name and town. In order to search without 

bothering about letter case we can transform the words to lowercase in 

advance. After that the searching is trivial – we just search in the hash-table 

by a given word d or if a town t is given "d from t". Since we could have 

many phone numbers under the same key, for a value in the hash-table we 

should use a list of strings (List<string>). 

Let’s skim through an implementation of the described algorithm: 
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class PhoneBookFinder 
{ 
 const string PhoneBookFileName = "PhoneBook.txt"; 
 const string QueriesFileName = "Queries.txt"; 
 
 static Dictionary<string, List<string>> phoneBook = 
  new Dictionary<string, List<string>>(); 
 
 static void Main() 
 { 
  ReadPhoneBook(); 
  ProcessQueries(); 
 } 
 
 static void ReadPhoneBook() 
 { 
  StreamReader reader = new StreamReader(PhoneBookFileName); 
  using (reader) 
  { 
   while (true) 
   { 
    string line = reader.ReadLine(); 
    if (line == null) 
    { 
     break; 
    } 
    string[] entry = line.Split(new char[]{'|'}); 
    string names = entry[0].Trim(); 
    string town = entry[1].Trim(); 
 
    string[] nameTokens = 
     names.Split(new char[] {' ', '\t'} ); 
    foreach (string name in nameTokens) 
    { 
     AddToPhoneBook(name, line); 
     string nameAndTown = CombineNameAndTown(town, name); 
     AddToPhoneBook(nameAndTown, line); 
    } 
   } 
  } 
 } 
 
 static string CombineNameAndTown( string town, string name) 
 { 
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  return name + " from " + town; 
 } 
 
 static void AddToPhoneBook(string name, string entry) 
 { 
  name = name.ToLower(); 
  List<string> entries; 
  if (! phoneBook.TryGetValue(name, out entries)) 
  { 
   entries = new List<string>(); 
   phoneBook.Add(name, entries); 
  } 
  entries.Add(entry); 
 } 
 
 static void ProcessQueries() 
 { 
  StreamReader reader = new StreamReader(QueriesFileName); 
  using (reader) 
  { 
   while (true) 
   { 
    string query = reader.ReadLine(); 
    if (query == null) 
    { 
     break; 
    } 
    ProcessQuery(query); 
   } 
  } 
 } 
 
 static void ProcessQuery(string query) 
 { 
  if (query.StartsWith("list(")) 
  { 
   int listLen = "list(".Length; 
   string name = query.Substring( 
    listLen, query.Length-listLen-1); 
   name = name.Trim().ToLower(); 
   PrintAllMatches(name); 
  } 
  else if (query.StartsWith("find(")) 
  { 
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   string[] queryParams = query.Split( 
    new char[] { '(', ' ', ',', ')' }, 
    StringSplitOptions.RemoveEmptyEntries); 
   string name = queryParams[1]; 
   name = name.Trim().ToLower(); 
   string town = queryParams[2]; 
   town = town.Trim().ToLower(); 
   string nameAndTown = 
    CombineNameAndTown(town, name); 
   PrintAllMatches(nameAndTown); 
  } 
  else 
  { 
   Console.WriteLine( 
    query + " is invalid command!"); 
  } 
 } 
 
 static void PrintAllMatches(string key) 
 { 
  List<string> allMatches; 
  if (phoneBook.TryGetValue(key, out allMatches)) 
  { 
   foreach (string entry in allMatches) 
   { 
    Console.WriteLine(entry); 
   } 
  } 
  else 
  { 
   Console.WriteLine("Not found!"); 
  } 
  Console.WriteLine(); 
 } 
} 

While reading the phone book line by line and splitting by the vertical bar "|", 

we extract the three columns (names, city name and phone number). After 

that the names are split and each word is added in the hash-table. 

Additionally we add each word, combined with the city name (so that we can 

search by name + city name). 

The second part of the algorithm is the command execution. In this part 

each line from the query file is read and processed. The process includes 

parsing the command, extracting the name or name and city name and 
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searching. The search is directly done by using the hash-table, which is 

created after reading the phone book file. 

To be able to ignore the difference between lowercase and uppercase, all keys 

in the hash-table are added as lowercase. When we search, we do it 

lowercase too. 

Choosing a Data Structure – Conclusions 

By the many examples it is clear that the choice of an appropriate data 

structure is highly dependable on the specific task. Sometimes data 

structures have to be combined or we have to use several of them 

simultaneously. 

What data structure should we pick mostly depends on the operations we 

will perform, so always ask yourselves "what operations should the 

structure, I need, perform efficiently". If you are familiar with the operations, 

you can easily conform which structure does them most efficiently and at the 

same time is easy and handy. 

In order to efficiently choose an appropriate data structure, you should firstly 

invent the algorithm, which you are going to implement, and then look for 

an appropriate data structures for it. 

 

Always go from the algorithm to the data structures, never 

backwards. 

External Libraries with .NET Collections 

It is a well-known fact that the standard data structures in .NET Framework 

System.Collections.Generic have pretty poor functionality. It lacks 

implementations of basic concepts in data structures such as multi-sets, 

priority queues, for which there should be standard classes as well as basic 

system interfaces. 

When we have to use a special data structure, which is not standardly 

implemented in .NET Framework, we have two options: 

- First option: we implement the data structure ourselves. This gives 

us flexibility, because the implementation will completely meet our 

needs, but it takes a lot of time and it has a great chance of making 

mistakes. For example, if one has to qualitatively implement a balanced 

tree, this may take an experienced software developer several days 

(along with the tests). If the same is implemented by inexperienced 

software developer it will take a lot more time and most probably there 

will be errors in the implementation. 

- Second option (generally preferable): find an external library, which 

has a full implementation of the needed functionality. This approach has 

an advantage of saving us time and troubles, because in most cases the 

external libraries of data structures are well-tested. They have been 
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used for years by thousands of software developers and this makes 

them mature and reliable. 

Power Collections for .NET 

One of the most popular and richest libraries with efficient implementations of 

the fundamental data structures for C# and .NET software developers is the 

open-source project "Wintellect’s Power Collections for .NET" – 

http://powercollections.codeplex.com. It provides free, reliable, efficient, fast 

and handy implementations of the following commonly used data structures, 

which are missing or partly-implemented in .NET framework: 

- Set<T> – set of elements, implemented with a hash-table. It 

efficiently implements the basic operations over sets: adding, deleting 

and searching an element as well as union, intersection, difference 

between sets and many more. By functionality and way of work the 

class looks like the standard class HashSet<T> in .NET Framework. 

- Bag<T> – multi-set of elements (set with duplicates), implemented 

with a hash-table. It efficiently implements all basic operations over 

multi-sets. 

- OrderedSet<T> – ordered set of elements (without duplicates), 

implemented with a balanced search tree. It efficiently implements all 

basic operations over sets and when traversing through its elements it 

returns them in ascending order (according to the used comparer). It 

allows a fast extraction of subsets of values in a given interval. 

- OrderedBag<T> – ordered multi-set of elements, implemented with a 

balanced search tree. It efficiently implements all basic operations 

over multi-sets and when going through all its elements it returns them 

in ascending order (according to the used comparer). It allows a quick 

extraction of subsets of values in a given interval. 

- MultiDictionary<K,T> – it is a hash-table allowing key duplicates. 

For every key there is a collection of values stored, not one single value. 

- OrderedDictionary<K,T> – it represents a dictionary, implemented 

with a balanced search tree. It allows a fast search by key and when 

going through its elements it returns them in ascending order. It 

enables us to quickly extract the values from a given key range. By 

functionality and way of work the class looks like the standard class 
SortedDictionary<K,T> in .NET Framework. 

- Deque<T> – represents efficient implementation of a queue with two 

ends (double ended queue), which practically combines the data 

structures stack and queue. It allows efficient addition, extraction and 

deletion of elements in both ends. 

- BagList<T> – list of elements, accessed through index, which 

allows a quick insertion and deletion of an element from a particular 

position. The operations index accessing, adding, inserting at position 

http://powercollections.codeplex.com/
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and removing an element from position have a complexity O(log N). The 

implementtation is with a balanced tree. The structure is a good 

alternative of List<T>, in which the insertion and removal of element at 

a particular position takes linear time because of the need of the 

replacement of linear number of elements to the left or right. 

We let the reader the opportunity to download the library "Power 

Collections for .NET" from its site and to experiment with it. It can be 

very useful when you solve some of the problems from the exercises. 

C5 Collections for .NET 

Another very powerful library of data structures and collection classes is “The 

C5 Generic Collection Library for C# and CLI” (www.itu.dk/research/c5/). 

It provides standard interfaces and collection classes like lists, sets, bags, 

multi-sets, balanced trees and hash tables, as well as non-traditional 

data structures like “hashed linked list”, “wrapped arrays” and “interval 
heaps”. It also describes a set of collection-related algorithms and patterns, 

such as “read-only access”, “random selection”, “removing duplicates”, etc. 
The library comes with solid documentation (a book of 250 pages). The C5 

collections and the book about them are the ultimate resource for data 

structure developers. 

Exercises 

1. Hash-tables do not allow storing more than one value in a key. How can 

we get around this restriction? Define a class to hold multiple values in a 

hash-table. 

2. Implement a data structure, which can quickly do the following two 

operations: add an element and extract the smallest element. The 

structure should accept adding duplicated elements. 

3. It is given a text file students.txt containing information about students 

and their specialty in the following format: 

Steven Davis | Computer Science 
Joseph Johnson | Software Engeneering 
Helen Mitchell | Public Relations 
Nicolas Carter | Computer Science 
Susan Green | Public Relations 
William Johnson | Software Engeneering 

Using SortedDictionary<K,T> print on the console the specialties in an 

alphabetical order and for each of them print the names of the students, 

firstly sorted by family name and secondly – by first name, as shown: 

Computer Sciences: Nicolas Carter, Steven Davis 
Public Relations: Susan Green, Helen Mitchell 

http://www.itu.dk/research/c5/
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Software Engeneering: Joseph Johnson, William Johnson 

4. Implement a class BiDictionary<K1,K2,T>, which allows adding triplets 

{key1, key2, value} and quickly search by either of the keys key1, key2 

as well as searching by combination of the both keys. Note: Adding many 

elements with the same keys is allowed. 

5. A big chain of supermarkets sell millions of products. Each of them has a 

unique number (barcode), producer, name and price. What data structure 

could we use in order to quickly find all products, which cost between 

5 and 10 dollars? 

6. A timetable of a conference hall is a list of events in a format [starting 

date and time; ending date and time; event’s name]. What data 

structure could we to be able to quickly add events and quickly check 

whether the hall is available in a given interval [starting date and 

time; ending date and time]? 

7. Implement the data structure PriorityQueue<T>, which offers quick 

execution of the following operations: adding an element, extracting 

the smallest element. 

8. Imagine you develop a search engine, which gathers all the 

advertisements for used cars in ten websites for the last few years. After 

that the search engine allows a quick search by one or several criteria: a 

brand, model, color, year of production and price. You are not allowed to 

use database management system (like SQL Server, MySQL or MongoDB) 

and you must implement your own indexing in the memory, without storing 

it to the hard disk and without using LINQ. When one searches by price 

minimal and maximal price is given. When one searches by year of 

production a starting and ending years are given. What data structures 

would you use in order to ensure fast searching by one or several criteria? 

Solutions and Guidelines 

1. You can use Dictionary<key, List<value>> or create your own class 

ValuesCollection, which can take care of the values with the same key 

and use Dictionary<key, ValuesCollection>. 

2. You can use SortedSet<List<int>> and its operations Add() and 

First(). SortedSet<T> keeps the elements in it sorted and can accept 

external IComparer<T>. 

The problem has a more efficient solution though – the data structure 

called “binary heap”. You can read about it on Wikipedia: 

http://en.wikipedia.org/wiki/Binary_heap. 

3. The task is similar to the one from the section "Sorting Students". 

4. One of the solutions to this task is to use two instances of the class 

Dictionary<K,T> for each of the two keys and when you add or remove 

http://en.wikipedia.org/wiki/Binary_heap
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an element from BiDictionary<K1,K2,T>, you add or remove the element 

from the two hash-tables correspondingly. When you search by first or 

second key, you should check the elements in the first or the second hash-

table respectively. When you search by two keys, you could search in the 

two hash-tables separately and intersect the matching subsets. 

Another, simpler approach is to hold 3 hash tables: Dictionary<K1,T>, 

Dictionary<K2,T> and Dictionary<Tuple<K1,K2>,T>. The system 

generic class Tuple<K1,K2> can be used to combine two keys and use it as 

a composite key. 

5. If we keep the products sorted by price in an array (for example in 

List<Product>, which we firstly fill and then sort), in order to find all the 

products which cost between 5 and 10 bucks we can use a binary search 

twice. Firstly we can find the smallest index start, in which lies a product 

costing at least 5 bucks. After that we can find the biggest index end, in 

which lies a product costing at most 10 bucks. All the products at positions 

in the interval [start … end] will cost between 5 and 10 dollars. If you are 

interested in the algorithm binary search in a sorted array you could inform 

yourself reading Wikipedia: http://en.wikipedia.org/wiki/Binary_search. 

Generally the approach using a sorted array and binary search in it works 

excellent, but there is a disadvantage: the addition in a sorted array is a 

very slow operation, because it requires moving a linear number of 

elements with one position ahead of the inserted new element. 

To overcome this we can use the class SortedSet<T>. It supports fast 

insertion keeping the elements in a sorted order. It has an operation 

SortedSet<T>.GetViewBetween(lowerBound, upperBound) that returns a 

subset of the elements in certain range (interval). 

You may also use the class OrderedSet<T> from "Wintellect’s Power 

Collections for .NET" library (http://www.codeplex.com/PowerCollections) 

which is more powerful and more flexible. It has a method for extracting a 

sub-range of values: OrderedSet<T>.Range(from, fromInclusive, to, 

toInclusive). 

6. We can create two sorted arrays (List<Event>): the first will keep the 

events sorted in ascending order by starting date and time; the second 

will keep the same events sorted by ending date and time. By using 

binary search we can find all the events which can be partly or fully found 

between the two moments of time [start, end] by doing the following: 

- Find the set S of all events starting after the moment start (using 

binary search). 

- We can find all the set E of all events ending before the moment end 

(using binary search). 

- Intersect these two sets: C = S ∩ E. If the intersection S of the two 

sets of events have common elements (S in non-empty set), then in 

http://en.wikipedia.org/wiki/Binary_search
http://www.codeplex.com/PowerCollections
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the searched interval [start … end] the hall is occupied. Otherwise it 

is available. 

This solution has a disadvantage: adding elements in the sorted arrays 

will be slow. We should either add all elements initially and then sort the 

two arrays and never change them afterwards or try to keep the arrays 

sorted when adding new elements (which will be slow). 

Another solution, which is easier to implement and more efficient, is to 

use two instances of the class OrderedBag<T> from the "Power Collections 

for .NET" library (the first with event’s start date and time as a key and 

the second with event’s end date and time as a key). The class has 

methods to extract the subsets S and E: RangeFrom(from, 

fromInclusive) and RangeTo(to, toInclusive). We still will need to 

intersect these sets and check whether their intersection is empty or not. 

The most efficient solution is to use a data structure called “interval tree”. 
Read more in Wikipedia: http://en.wikipedia.org/wiki/Interval_tree. You 

may find an open source C# interval tree implementation in CodePlex: 

http://intervaltree.codeplex.com. 

7. Since there is no internal implementation of the data structure "priority 

queue" in .NET, you can use the data structure OrderedBag<T> from 

Wintellect’s Power Collections. It had Addſ…ƀ and GetFirst() and 

RemoveFirst() methods. You can read more about priority queues on 

Wikipedia: http://en.wikipedia.org/wiki/Priority_Queue. 

The classic, simplest efficient priority queue implementation the data 

structure “binary heap”: http://en.wikipedia.org/wiki/Binary_heap. 

An efficient ready-to-use C# implementation of priority queue is the class 

IntervalHeap<T> in the C5 Collections: http://www.itu.dk/research/c5/. 

8. For searching by brand, model and color we can use one hash-table 

per each, which will search by a given criteria and return a list of cars 

(Dictionary<string, List<Car>>). 

For searching by year of production and price range we can use lists 

List<Car>, sorted in ascending order (and binary search). 

To search by several criteria at once we can extract the cars' subsets by 

the first criteria, after that the cars' subsets by the second criteria 

and so on. At the end we can find the intersection of the sets. 

Intersection of two sets can be found by looking for every element in the 

smaller set in the bigger set. The easiest way is Car to implement 
Equals() and GetHashCode() and after that to use the class 

HashSet<Car> for set intersections. 

http://en.wikipedia.org/wiki/Interval_tree
http://intervaltree.codeplex.com/
http://powercollections.codeplex.com/
http://en.wikipedia.org/wiki/Priority_Queue
http://en.wikipedia.org/wiki/Binary_heap
http://www.itu.dk/research/c5/

