
Chapter 19. Data Structures
and Algorithm Complexity

In This Chapter

In this chapter we will compare the data structures we have learned so far

by the performance (execution speed) of the basic operations (addition,

search, deletion, etc.). We will give specific tips in what situations what data

structures to use. We will explain how to choose between data structures

like hash-tables, arrays, dynamic arrays and sets implemented by hash-tables

or balanced trees. Almost all of these structures are implemented as part of

NET Framework, so to be able to write efficient and reliable code we have

to learn to apply the most appropriate structures for each situation.

Why Are Data Structures So Important?

You may wonder why we pay so much attention to data structures and

why we review them in such a great details. The reason is we aim to make

out of you thinking software engineers. Without knowing the basic data

structures and computer algorithms in programming well, you cannot be good

developers and risk to stay an amateur. Whoever knows data structures

and algorithms well and starts thinking about their correct use has big

chance to become a professional – one that analyzes the problems in depth

and proposes efficient solutions.

There are hundreds of books written on this subject. In the four volumes,

named "The Art of Computer Programming", Donald Knuth explains

data structures and algorithms in more than 2500 pages. Another author,

Niklaus Wirth, has named his book after the answer to the question "why

are data structures so important", which is "Algorithms + Data Structures

= Programs". The main theme of the book is again the fundamental

algorithms and data structures in programming.

Data structures and algorithms are the fundamentals of

programming. In order to become a good developer it is

essential to master the basic data structures and algorithms

and learn to apply them in the right way.

To a large degree our book is focused on learning data structures and

algorithms along with the programming concepts, language syntax and

problem solving. We also try to illustrate them in the context of modern

software engineering with C# and .NET Framework.

http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs
http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs

770 Fundamentals of Computer Programming with C#

Algorithm Complexity

We cannot talk about efficiency of algorithms and data structures

without explaining the term "algorithm complexity", which we have already

mentioned several times in one form or another. We will avoid the

mathematical definitions and we are going to give a simple explanation of

what the term means.

Algorithm complexity is a measure which evaluates the order of the count

of operations, performed by a given or algorithm as a function of the size of

the input data. To put this simpler, complexity is a rough approximation of

the number of steps necessary to execute an algorithm. When we evaluate

complexity we speak of order of operation count, not of their exact count. For

example if we have an order of N2 operations to process N elements, then

N2/2 and 3*N2 are of one and the same quadratic order.

Algorithm complexity is commonly represented with the O(f) notation, also

known as asymptotic notation or “Big O notation”, where f is the function

of the size of the input data. The asymptotic computational complexity O(f)

measures the order of the consumed resources (CPU time, memory, etc.) by

certain algorithm expressed as function of the input data size.

Complexity can be constant, logarithmic, linear, n*log(n), quadratic,

cubic, exponential, etc. This is respectively the order of constant,

logarithmic, linear and so on, number of steps, are executed to solve a given

problem. For simplicity, sometime instead of “algorithms complexity” or
just “complexity” we use the term “running time”.

Algorithm complexity is a rough approximation of the

number of steps, which will be executed depending on the

size of the input data. Complexity gives the order of steps

count, not their exact count.

Typical Algorithm Complexities

This table will explain what every type of complexity (running time) means:

Complexity Running Time Description

constant O(1)

It takes a constant number of steps for

performing a given operation (for example

1, 5, 10 or other number) and this count

does not depend on the size of the input

data.

logarithmic O(log(N))

It takes the order of log(N) steps, where

the base of the logarithm is most often 2,

for performing a given operation on N

elements. For example, if N = 1,000,000,

an algorithm with a complexity O(log(N))

Chapter 19. Data Structures and Algorithm Complexity 771

would do about 20 steps (with a constant

precision). Since the base of the logarithm

is not of a vital importance for the order of

the operation count, it is usually omitted.

linear O(N)

It takes nearly the same amount of

steps as the number of elements for

performing an operation on N elements.

For example, if we have 1,000 elements, it

takes about 1,000 steps. Linear

complexity means that the number of

elements and the number of steps are

linearly dependent, for example the

number of steps for N elements can be

N/2 or 3*N.

 O(n*log(n))

It takes N*log(N) steps for performing a

given operation on N elements. For

example, if you have 1,000 elements, it

will take about 10,000 steps.

quadratic O(n2)

It takes the order of N2 number of steps,

where the N is the size of the input data,

for performing a given operation. For

example if N = 100, it takes about 10,000

steps. Actually we have a quadratic

complexity when the number of steps is in

quadratic relation with the size of the

input data. For example for N elements

the steps can be of the order of 3*N2/2.

cubic O(n3)

It takes the order of N3 steps, where N is

the size of the input data, for performing

an operation on N elements. For example,

if we have 100 elements, it takes about

1,000,000 steps.

exponential
O(2n), O(N!),

O(nk), …

It takes a number of steps, which is with

an exponential dependability with the

size of the input data, to perform an

operation on N elements. For example, if

N = 10, the exponential function 2N has a

value of 1024, if N = 20, it has a value of

1 048 576, and if N = 100, it has a value

of a number with about 30 digits. The

exponential function N! grows even faster:

for N = 5 it has a value of 120, for N = 10

it has a value of 3,628,800 and for N = 20

– 2,432,90,008,176,640,000.

772 Fundamentals of Computer Programming with C#

When evaluating complexity, constants are not taken into account,

because they do not significantly affect the count of operations. Therefore an

algorithm which does N steps and algorithms which do N/2 or 3*N

respectively are considered linear and approximately equally efficient,

because they perform a number of operations which is of the same order.

Complexity and Execution Time

The execution speed of a program depends on the complexity of the

algorithm, which is executed. If this complexity is low, the program will

execute fast even for a big number of elements. If the complexity is high, the

program will execute slowly or will not even work (it will hang) for a big

number of elements.

If we take an average computer from 2008, we can assume that it can

perform about 50,000,000 elementary operations per second. This

number is a rough approximation, of course. The different processors work

with a different speed and the different elementary operations are performed

with a different speed, and also the computer technology constantly evolves.

Still, if we accept we use an average home computer from 2008, we can make

the following conclusions about the speed of execution of a given program

depending on the algorithm complexity and size of the input data.

Algorithm 10 20 50 100 1,000 10,000 100,000

O(1)
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
< 1 sec. < 1 sec.

O(log(n))
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
< 1 sec. < 1 sec.

O(n)
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
< 1 sec. < 1 sec.

O(n*log(n))
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
< 1 sec. < 1 sec.

O(n2)
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.
2 sec. 3-4 min.

O(n3)
< 1

sec.

< 1

sec.

< 1

sec.

< 1

sec.

20

sec.

5.55

hours

231.5

days

O(2n)
< 1

sec.

< 1

sec.

260

days
hangs hangs hangs hangs

O(n!)
< 1

sec.
hangs hangs hangs hangs hangs hangs

O(nn)
3-4

min.
hangs hangs hangs hangs hangs hangs

We can draw many conclusions from the above table:

Chapter 19. Data Structures and Algorithm Complexity 773

- Algorithms with a constant, logarithmic or linear complexity are so

fast that we cannot feel any delay, even with a relatively big size of the

input data.

- Complexity O(n*log(n)) is similar to the linear and works nearly as

fast as linear, so it will be very difficult to feel any delay.

- Quadratic algorithms work very well up to several thousand elements.

- Cubic algorithms work well if the elements are not more than 1,000.

- Generally these so called polynomial algorithms (any, which are not

exponential) are considered to be fast and working well for thousands of

elements.

- Generally the exponential algorithms do not work well and we

should avoid them (when possible). If we have an exponential solution

to a task, maybe we actually do not have a solution, because it will work

only if the number of the elements is below 10-20. Modern cryptography

is based exactly on this – there are not any fast (non-exponential)

algorithms for finding the secret keys used for data encryption.

If you solve a given problem with an exponential complexity

this means that you have solved it for a small amount of

input data and generally your solution does not work.

The data in the table is just for orientation, of course. Sometimes a linear

algorithm could work slower than a quadratic one or a cubic algorithm

could work faster than O(n*log(n)). The reasons for this could be many:

- It is possible the constants in an algorithm with a low complexity to be

big and this could eventually make the algorithm slow. For example, if

we have an algorithm, which makes 50*n steps and another one,

which makes 1/100*n*n steps, for elements up to 5000 the quadratic

algorithm will be faster than the linear.

- Since the complexity evaluation is made in the worst case scenario, it

is possible a quadratic algorithm to work better than O(n*log(n)) in 99%

of the cases. We can give an example with the algorithm QuickSort

(the standard sorting algorithm in .NET Framework), which in the

average case works a bit better than MergeSort, but in the worst case

QuickSort can make the order of n2 steps, while MergeSort does

always O(n*log(n)) steps.

- It is possible an algorithm, which is evaluated to execute with a linear

complexity, to not work so fast, because of an inaccurate complexity

evaluation. For example if we search for a given word in an array of

words, the complexity is linear, but at every step string comparison

is performed, which is not an elementary operation and can take much

more time than performing simple elementary operation (for example

comparison of two integers).

774 Fundamentals of Computer Programming with C#

Complexity by Several Variables

Complexity can depend on several input variables at once. For example, if we

look for an element in a rectangular matrix with sizes M and N, the

searching speed depends on M and N. Since in the worst case we have to

traverse the entire matrix, we will do M*N number of steps at most. Therefore

the complexity is O(M*N).

Best, Worst and Average Case

Complexity of algorithms is usually evaluated in the worst case (most

unfavorable scenario). This means in the average case they can work faster,

but in the worst case they work with the evaluated complexity and not slower.

Let’s take an example: searching in array. To find the searched key in the

worst case, we have to check all the elements in the array. In the best case

we will have luck and we will find the element at first position. In the average

case we can expect to check half the elements in the array until we find the

one we are looking for. Hence in the worst case the complexity is O(N) –

linear. In the average case the complexity is O(N/2) = O(N) – linear, because

when evaluating complexity one does not take into account the constants. In

the best case we have a constant complexity O(1), because we make only one

step and directly find the element.

Roughly Estimated Complexity

Sometimes it is hard to evaluate the exact complexity of a given

algorithm, because it performs operations and it is not known exactly how

much time they will take and how many operations will be done internally.

Let’s take the example of searching a given word in an array of strings

(texts). The task is easy: we have to traverse the array and search in every

text with Substring() or with a regular expression for the given word. We

can ask ourselves the question: if we had 10,000 texts, would this work fast?

What if the texts were 100,000? If we carefully think about it, we will

implement that in order to evaluate adequately, we have to know how big

are the texts, because there is a difference between searching in people’s

names (which are up to 50-100 characters) and searching in scientific articles

(which are roughly composed by 20,000 – 30,000 characters). However, we

can evaluate the complexity using the length of the texts, through which we

are searching: it is at least O(L), where L is the sum of the lengths of all

texts. This is a pretty rough evaluation, but it is much more accurate than

complexity O(N), where N is the number of the texts, right? We should think

whether we take into account all situations, which could occur. Does it matter

how long the searched word is? Probably searching of long words is slower

than searching of short words. In fact things are slightly different. If we

search for "aaaaaaa" in the text "aaaaaabaaaaacaaaaaabaaaaacaaaaab", this

will be slower than if we search for "xxx" in the same text, because in the first

case we will get more sequential matches than in the second case. Therefore,

Chapter 19. Data Structures and Algorithm Complexity 775

in some special situations, searching seriously depends on the length of the

word we search and the complexity O(L) could be underestimated.

Complexity by Memory

Besides the number of steps using a function of the input data, one can

measure other resources, which an algorithm uses, for example memory,

count of disk operations, etc. For some algorithms the execution speed is not

as important as the memory they use. For example if a given algorithm is

linear but it uses RAM in the order of N2, it will be probably shortage of

memory if N = 100,000 (then it will need memory in order of 9 GB RAM),

despite the fact that it should work very fast.

Estimating Complexity – Examples

We are going to give several examples, which show how you can estimate

the complexity of your algorithms, and decide whether the code written by

you will work fast:

If we have a single loop from 1 to N, its complexity is linear – O(N):

int FindMaxElement(int[] array)
{
 int max = int.MinValue;
 for (int i = 1; i < array.Length; i++)
 {
 if (array[i] > max)
 {
 max = array[i];
 }
 }
 return max;
}

This code will work well even if the number of elements is huge.

If we have two of nested loops from 1 to N, their complexity is quadratic

– O(N2). Example:

int FindInversions(int[] array)
{
 int inversions = 0;
 for (int i = 0; i < array.Length - 1; i++)
 {
 for (int j = i + 1; j < array.Length; j++)
 {
 if (array[i] > array[j])
 {

776 Fundamentals of Computer Programming with C#

 inversions++;
 }
 }
 }
 return inversions;
}

If the elements are no more than several thousand or tens of thousands, this

code will work well.

If we have tree nested loops from 1 to N, their complexity is cubic –

O(N3). Example:

long Sum3(int n)
{
 long sum = 0;
 for (int a = 1; a < n; a++)
 {
 for (int b = 1; b < n; b++)
 {
 for (int c = 1; c < n; c++)
 {
 sum += a * b * c;
 }
 }
 }
 return sum;
}

This code will work well if the number of elements is below 1,000.

If we have two nested loops from 1 to N and from 1 to M respectively,

their complexity will be quadratic – O(N*M). Example:

long SumMN(int n, int m)
{
 long sum = 0;
 for (int x = 1; x <= n; x++)
 {
 for (int y = 1; y <= m; y++)
 {
 sum += x * y;
 }
 }
 return sum;
}

Chapter 19. Data Structures and Algorithm Complexity 777

The speed of this code depends on two variables. The code will work well if

M, N < 10,000 or if at least the one variable has a value small enough.

We should pay attention to the fact that not always tree nested loops mean

cubic complexity. Here is an example in which the complexity is O(N*M):

long SumMN(int n, int m)
{
 long sum = 0;
 for (int x = 1; x <= n; x++)
 {
 for (int y = 1; y <= m; y++)
 {
 if (x == y)
 {
 for (int i = 1; i <= n; i++)
 {
 sum += i * x * y;
 }
 }
 }
 }
 return sum;
}

In this example the most inner loop executes exactly min(M, N) times and

does not significantly affect the algorithm speed. The outer code executes

approximately N*M + min(M,N)*N steps, i.e. its complexity is quadratic.

When using a recursion, the complexity is more difficult to be

estimated. Here is an example:

long Factorial(int n)
{
 if (n == 0)
 {
 return 1;
 }
 else
 {
 return n * Factorial(n - 1);
 }
}

In this example the complexity is obviously linear – O(N), because the

function Factorial() executes exactly once for each of the numbers 1 … n.

778 Fundamentals of Computer Programming with C#

Here is a recursive function for which it is very difficult to estimate the

complexity:

long Fibonacci(int n)
{
 if (n == 0)
 {
 return 1;
 }
 else if (n == 1)
 {
 return 1;
 }
 else
 {
 return Fibonacci(n - 1) + Fibonacci(n - 2);
 }
}

If we write down what really happens when the upper code executes, we will

see that the function calls itself as many times as the Fibonacci’s n+1 number

is. We can roughly evaluate the complexity by another way too: since on

every step of the function execution 2 recursive calls are done in average, the

count of the recursive calls must be in order of 2n, i.e. we have an

exponential complexity. This automatically means that for values greater

than 20-30 the function will "hang". You may check this yourself.

The same function for calculating the nth number of Fibonacci can be

written with a linear complexity in the following way:

long Fibonacci(int n)
{
 long fn = 1;
 long fn1 = 1;
 long fn2 = 1;
 for (int i = 2; i < n; i++)
 {
 fn = fn1 + fn2;
 fn2 = fn1;
 fn1 = fn;
 }
 return fn;
}

You see that the complexity estimation helps us to predict whether a given

code will work slowly before we have run it and it implies we should look

for a more efficient solution.

Chapter 19. Data Structures and Algorithm Complexity 779

Comparison between Basic Data Structures

After you have been introduced to the term algorithm complexity, we are now

ready to make a comparison between the basic data structures, which

we know from the last few chapters, and to estimate with what complexity

each of them performs the basic operations like addition, searching,

deletion and access by index (when applicable). In that way we could

easily judge according to the operations we expect to need, which structure

would be the most appropriate. The complexities of the basic operations

on the basic data structures, which we have reviewed in the previous

chapters, are given in the table below:

Data structure Addition Search Deletion
Access

by index

Array (T[]) O(N) O(N) O(N) O(1)

Linked list (LinkedList<T>) O(1) O(N) O(N) O(N)

Dynamic array (List<T>) O(1) O(N) O(N) O(1)

Stack (Stack<T>) O(1) - O(1) -

Queue (Queue<T>) O(1) - O(1) -

Dictionary, implemented

with a hash-table

(Dictionary<K, T>)
O(1) O(1) O(1) -

Dictionary, implemented

with a balanced search tree

(SortedDictionary<K, T>)
O(log(N)) O(log(N)) O(log(N)) -

Set, implemented with a

hash-table (HashSet<T>)
O(1) O(1) O(1) -

set, implemented with a

balanced search tree

(SortedSet<T>)
O(log(N)) O(log(N)) O(log(N)) -

We let the reader to think about how these complexities were estimated.

When to Use a Particular Data Structure?

Let’s skim through all the structures in the table above and explain in what

situations we should use them as well as how their complexities are

evaluated.

Array (T[])

The arrays are collections of fixed number of elements from a given type

(for example numbers) where the elements preserved their order. Each

780 Fundamentals of Computer Programming with C#

element can be accessed through its index. The arrays are memory areas,

which have a predefined size.

Adding a new element in an array is a slow operation. To do this we have

to allocate a memory with the same size plus one and copy all the data from

the original array to the new one.

Searching in an array takes time because we have to compare every

element to the searched value. It takes N/2 comparisons in the average case.

Removing an element from an array is a slow operation. We have to

allocate a memory with the same size minus one and copy all the old

elements except the removed one.

Accessing by index is direct, and thus, a fast operation.

The arrays should be used only when we have to process a fixed number of

elements to which we need a quick access by index. For example, if we

have to sort some numbers, we can keep them in an array and then apply

some of the well-known sorting algorithms. If we have to change the

elements' count, the array is not the correct data structure we should use.

Use arrays when you have to process a fixed number of

elements to which you need an access through index.

Singly / Doubly Linked List (LinkedList<T>)

Singly and doubly linked lists hold collection of elements, which preserve

their order. Their representation in the memory is dynamic, pointer-based.

They are linked sequences of element.

Adding is a fast operation but it is a bit slower than adding to a List<T>

because every time when we add an element to a linked list we allocate a new

memory area. The memory allocation works at speed, which cannot be easily

predicted.

Searching in a linked list is a slow operation because we have to traverse

through all of its elements.

Accessing an element by index is a slow operation because there is no

indexing in singly and doubly linked lists. You have to go through all the

elements from the start one by one instead.

Removing an element at a specified index is a slow operation because

reaching the element through its index is a slow operation. Removing an

element with a specified value is a slow operation too, because it involves

searching.

Linked list can quickly add and remove elements (with a constant

complexity) at its two ends (head and tail). Hence, it is very handy for an

implementation of stacks, queues and similar data structures.

Chapter 19. Data Structures and Algorithm Complexity 781

Linked lists are rarely used in practice because the dynamic arrays

(List<T>) can do almost exact same operations LinkedList does, plus for

the most of them it works faster and more comfortable.

When you need a linked list, use List<T> instead of LinkedList<T>, because

it doesn’t work slower and it gives you better speed and flexibility. Use

LinkedList when you have to add and remove elements at both ends of

the data structure.

When you need to add and remove elements at both ends of

the list, use LinkedList<T>. Otherwise use List<T>.

Dynamic Array (List<T>)

Dynamic array (List<T>) is one of the most popular data structures used

in programming. It does not have fixed size like arrays, and allows direct

access through index, unlike linked lists (LinkedList<T>). The dynamic array

is also known as "array list", "resizable array" and "dynamic array".

List<T> holds its elements in an array, which has a bigger size than the

count of the stored elements. Usually when we add an element, there is an

empty cell in the list’s inner array. Therefore this operation takes a constant

time. Occasionally the array has been filled and it has to expand. This takes

linear time, but it rarely happens. If we have a large amount of additions, the

average-case complexity of adding an element to List<T> will a constant –

O(1). If we sum the steps needed for adding 100,000 elements (for both

cases – "fast add" and "add with expand") and divide by 100,000, we will

obtain a constant which will be nearly the same like for adding 1,000,000

elements.

This statistically-averaged complexity calculated for large enough amount of

operations is called amortized complexity. Amortized linear complexity

means that if we add 10,000 elements consecutively, the overall count of

steps will be of the order of 10,000. In most cases add it will execute in a

constant time, while very rarely adding will execute in linear time.

Searching in List<T> is a slow operation because you have to traverse

through all the elements.

Removing by index or value executes in a linear time. It is a slow

operation because we have to move all the elements after the deleted one

with one position to the left.

The indexed access in List<T> is instant, in a constant time, since the

elements are internally stored in an array.

Practically List<T> combines the best of arrays and lists, for which it is a

preferred data structure in many situations. For example if we have to

process a text file and to extract from it all words (with duplicates), which

782 Fundamentals of Computer Programming with C#

match a regular expression, the most suitable data structure in which we can

accumulate them is List<T>, because we need a list, the length of which is

unknown in advance and can grow dynamically.

The dynamic array (List<T>) is appropriate, when we have to add elements

frequently as well as keeping their order of addition and access them through

index. If we often we have to search or delete elements, List<T> is not the

right data structure.

Use List<T>, when you have to add elements quickly and

access them through index.

Stack

Stack is a linear data structure in which there are 3 operations defined:

adding an element at the top of the stack (push), removing an element from

the top of the stack (pop) and inspect the element from the top without

removing it (peek). All these operations are very fast – it takes a constant

time to execute them. The stack does not support the operations search and

access through index.

The stack is a data structure, which has a LIFO behavior (last in, first out).

It is used when we have to model such a behavior – for example, if we have

to keep the path to the current position in a recursive search.

Use a stack when you have to implement the behavior "last

in, first out" (LIFO).

Queue

Queue is a linear data structure in which there are two operations defined:

adding an element to the tail (enqueue) and extract the front-positioned

element from the head (dequeue). These two operations take a constant

time to execute, because the queue is usually implemented with a linked list.

We remind that the linked list can quickly add and remove elements from its

both ends.

The queue’s behavior is FIFO (first in, first out). The operations searching

and accessing through index are not supported. Queue can naturally model a

list of waiting people, tasks or other objects, which have to be processed in

the same order as they were added (enqueued).

As an example of using a queue we can point out the implementation of the

BFS (breadth-first search) algorithm, in which we start from an initial

element and all its neighbors are added to a queue. After that they are

processed in the order they were added and their neighbors are added to the

queue too. This operation is repeated until we reach the element we are

looking for or we process all elements.

Chapter 19. Data Structures and Algorithm Complexity 783

Use a queue when you have to implement the behavior "first

in, first out" (FIFO).

Dictionary, Implemented with a Hash-Table
(Dictionary<K, T>)

The data structure "dictionary" suggests storing key-value pairs and

provides a quick search by key. The implementation with a hash table (the

class Dictionary<K,T> in .NET Framework) has a very fast add, search

and remove of elements – constant complexity at the average case. The

operation access through index is not available, because the elements in the

hash-table have no order, i.e. an almost random order.

Dictionary<K,T> keeps internally the elements in an array and puts every

element at the position calculated by the hash-function. Thus the array is

partially filled – in some cells there is a value, others are empty. If more than

one element should be placed in a single cell, elements are stored in a linked

list. It is called chaining. This is one of the few ways to resolve the collision

problem. When the load factor exceeds 75%, the size is doubled and all the

elements occupy new positions. This operation has a linear complexity, but it

is executed so rarely, that the amortized complexity remains a constant.

Hash-table has one peculiarity: if we choose a bad hash-function causing

many collisions, the basic operations can become very inefficient and reach

linear complexity. In practice, however, this hardly happens. Hash-table is

considered to be the fastest data structure, which provides adding and

searching by key.

Hash-table in .NET Framework permits each key to be put only once. If we

add two elements with the same key consecutively, the last will replace the

first and we will eventually lose an element. This important feature should be

considered.

From time to time one key will have to keep multiple values. This is not

standardly supported but we can store the values matching this key in a
List<T> as a sequence of elements. For example if we need a hash-table

Dictionary<int, string>, in which to accumulate pairs {integer, string}

with duplicates, we can use Dictionary<int, List<string>>. Some external

libraries have ready to use data structure called MultiDictionary<K,V>.

Hash-table is recommended to be used every time we need fast addition

and fast search by key. For example if we have to count how many times

each word is encountered in a set of words in a text file, we can use

Dictionary<string, int> – the key will be a particular word, the value –

how many times we have seen it.

Use a hash-table, when you want to add and search by key

very fast.

784 Fundamentals of Computer Programming with C#

A lot of programmers (mostly beginners) live with the delusion the main

advantage of using a hash-table is the comfort of searching a value by its

key. Actually this is wrong. We can implement searching a key with an array,

a list or even a stack. There is no problem, everyone can build it. We can

define a class Entry, which holds a key-value pair and after that we will work

with an array or a list with Entry elements. We can implement the search but

by any circumstances it will work slowly. This is the big problem with lists and

arrays – they do not offer a fast search. Unlike them the hash-table can

search and add new elements very fast.

The main advantage of the hash-table over the other data

structures is a very quick searching and addition. The

comfort for the developers is a secondary factor.

Dictionary, Implemented with a Balanced Tree

(SortedDictionary<K,T>)

The implementation of the data structure "dictionary" as a red-black tree

(the class SortedDictionary<K,T>) is a structure storing key-value pairs

where keys are ordered increasingly (sorted). The structure provides a fast

execution of basic operations (add an element, search by key and remove an

element). The complexity of these operations is logarithmic – O(log(N)).

Thus, it will take 10 steps for add / search / remove when the dictionary holds

1,000 elements and 20 steps in case of 1,000,000 elements.

Unlike hash-tables, where we can reach linear complexity if we pick a bad

hash-function, in SortedDictionary<K,T> the count of the steps of the basic

operations in the average and worst case are the same – log2(N). When we

work with balanced trees, there is no hashing, no collisions and no risk of

using a bad hash-function.

Again, as in the hash-tables, one key can be stored at most once in the

structure. If we want to associate several values with one key, we should use

some kind of a list for the values, for example List<T>.

SortedDictionary<K,T> holds internally its values in a red-black balanced

tree ordered by key. This means if we traverse the structure (using its

iterator or foreach loop in C#) we will get the elements sorted in ascending

order by key. Sometimes this can be very useful property.

Use SortedDictionary<K,T> when you need a structure which can add,

search and remove an element fast and you also need to extract the elements

sorted in ascending order. In general Dictionary<K,T> works a bit faster

than SortedDictionary<K,T> and is preferable.

As an example of using a SortedDictionary<K,T>, we can give the following

task: find all the words in a text file, which occur exactly 10 times, and

print them alphabetically. This is a task that we can solve as successful

with Dictionary<K,T> too, but we will have to do an additional sorting at the

Chapter 19. Data Structures and Algorithm Complexity 785

end. For the solution of this task we can use SortedDictionary<string,

int> and to traverse through all the words in the text file. For each word we

will keep in the sorted dictionary how many times we have encountered it.

After that we can go through all the elements in the dictionary and print those

words, which have been encountered exactly 10 times. They will be

alphabetically ordered, since this is the natural internal order of the sorted

dictionary data structure.

Use SortedDictionary<K,T> when you want fast addition of

elements and searching by key as well as the elements to be

sorted by key.

Set, Implemented with a Hash-Table (HashSet<T>)

The data structure "set" is a collection of elements with no duplicates.

The basic operations are adding an element to the set, checking if an element

belongs to the set (searching) and removing an element from the set. The

operation searching through index is not supported, i.e. we do not have a

direct access to the elements via ordering number, because in this structure

there is not any order.

Set, implemented with a hash-table (the class HashSet<T>) is a special case

of a hash-table, in which we have only keys. The values associated with these

keys do not matter.

As in the hash-table, the basic operations in the data structure HashSet<T>

are implemented with a constant complexity O(1). Another similarity to

hash-table is if we choose a bad hash-function, we can reach a linear

complexity executing the basic operations. Fortunately in practice this almost

never happens.

As an example of using a HashSet<T>, we can point out the task of finding all

the different words in a text file.

Use HashSet<T>, when you have to quickly add elements to a

set and check whether a given element belongs to a set.

Set, Implemented with a Balanced Tree
(SortedSet<T>)

The data structure set, implemented with a red-black tree, is a special case of

SortedDictionary<K,T> in which keys and values coincide.

Similar to SortedDictionary<K,T>, the basic operations in SortedSet<T> are

executed with logarithmic complexity O(log(N)), which is the same in the

average and worst case.

786 Fundamentals of Computer Programming with C#

As an example of using a SortedSet<T> we can point out the task of finding

all the different words in a given text file and printing them alphabetically

ordered.

Use SortedSet<T>, when you have to quickly add an element

to a set and check whether given element belongs to the set

as well as need all the elements sorted in ascending order.

Choosing a Data Structure – Examples

We are going to show several problems, where the choice of an appropriate

data structure is crucial to the efficiency of their solution. The purpose of this

is to show you typical situations, in which the reviewed data structures are

used and to teach you in what scenarios what data structures you should use.

Generating Subsets

It is given a set of strings S. For example S = {ocean, beer, money,

happiness}. The task is to write a program, which prints all subsets of S.

The problem has many and different solutions, but we are going to focus on

the following one: We start from the empty set (with 0 elements):

{}

We add to it every element of S and we get a collection of subsets with one

element:

{ocean}, {beer}, {money}, {happiness}

To each of the one-elemental subsets we add every element from S, which

has not been added yet to the corresponding subset and now we have all two-

elemental subsets:

{ocean, beer}, {ocean, money}, {ocen, happiness}, {beer, money},
{beer, happiness}, {money, happiness}

If we keep on the same way, we will get all 3-elemental subsets and after

that all 4-elemental etc. to the N-elemental subsets.

How to implement this algorithm? We have to choose appropriate data

structures, right?

We can start with the data structure keeping the initial set of elements S. It

can be an array, linked list, dynamic array (List<string>) or set, imple-

mented as SortedSet<string> or HashSet<string>. To answer the question

which structure is the most appropriate, let’s think of which are the operations

we are going to do on this structure. We can think of only one operation –

Chapter 19. Data Structures and Algorithm Complexity 787

traversing through all the elements of S. This operation can be implemented

efficiently with any of these structures. We choose an array because it is the

simplest data structure of all and it is easy to work with.

The next step is to pick a structure in which we will store one of the

subsets we generate, for example {ocean, happiness}. Again we ask

ourselves the question what are the operations we execute on this subset of

words. The operations are a check whether an element exists and an addition

of an element, right? Which data structure quickly implements both opera-

tions? The arrays and lists do not search quickly, dictionaries store key-value

pairs, which is not our case. Almost no options are left, so we are going to see

what the data structure set offers. It supports a quick searching and addition.

Which implementation to choose – SortedSet<string> or HashSet<string>?

We do not have a requirement to sort the words in alphabetical order, so we

choose the faster implementation – HashSet<string>.

Lastly, we will choose one more data structure in which we are going to keep

the collection of the subsets of words, for example:

{ocean, beer}, {sea, money}, {sea, happiness}, {beer, money},
{beer, happiness}, {money, happiness}

Using this structure we have to be able to add as well as traverse through all

its elements consecutively. The following structures meet the requirements:

list, stack, queue and set. In each of them we can add quickly and go

through its elements. If we examine the algorithm for generating subsets, we

will notice each is processed in style: "first generated, first processed".

The subset, which had been firstly generated, has been firstly processed and

subsets with one more element have been generated from it, right? Therefore

our algorithm will most accurately fit the data structure queue. We can

describe the algorithm as follows:

1. We start with a queue, containing the empty set {}.

2. We dequeue an element called subset and try to add each element from

S which subset does not contain. The result is a set, which we enqueue.

3. We repeat step 2 until the queue becomes empty.

You can see how a few thoughts brought us to the classical algorithm

"breadth-first search" (BFS). Once we know what data structures we

should use, implementation is quick and easy. Here is how it might look:

string[] words = {"ocean", "beer", "money", "happiness"};
Queue<HashSet<string>> subsetsQueue =
 new Queue<HashSet<string>>();
HashSet<string> emptySet = new HashSet<string>();
subsetsQueue.Enqueue(emptySet);
while (subsetsQueue.Count > 0)

788 Fundamentals of Computer Programming with C#

{
 HashSet<String> subset = subsetsQueue.Dequeue();

 // Print current subset
 Console.Write("{ ");
 foreach (string word in subset)
 {
 Console.Write("{0} ", word);
 }
 Console.WriteLine("}");

 // Generate and enqueue all possible child subsets
 foreach (string element in words)
 {
 if (! subset.Contains(element))
 {
 HashSet<string> newSubset = new HashSet<string>();
 newSubset.UnionWith(subset);
 newSubset.Add(element);
 subsetsQueue.Enqueue(newSubset);
 }
 }
}

If we execute the code above, we will see that it successfully generates all

subsets of S, but some of them are generated twice.

{ }
{ ocean }
{ beer }
{ money }
{ happiness }
{ ocean beer }
{ ocean money }
{ ocean happiness }
{ beer ocean }
…

In the example the subsets { ocean beer } and { beer ocean } are actually

one and the same subset. It seems we have not thought of duplicates, which

occur when we mix the order of elements in the same subset. How can we

avoid duplicates?

Let’s associate the words by their indices.

ocean  0

Chapter 19. Data Structures and Algorithm Complexity 789

beer  1

money  2

happiness  3

Since the subsets {1, 2, 3} and {2, 1, 3} are actually one and a same subset,

in order to avoid duplicates, we are going to impose a requirement to

generate only subsets, in which the indices are in ascending order. Instead

of subsets of words we can keep subsets of indices, right? In these subsets of

indices we need two operations: adding an index and getting the biggest

index so we can add only indices bigger than it. Obviously we do not need

HashSet<T> anymore, but we can successfully use List<T>, in which the

elements are ordered in ascending order by index and the biggest element is

naturally placed last.

Finally, our algorithm looks something like this:

1. Let N be the number of elements in S. We start with a queue,

containing the empty set {}.

2. We dequeue an element called subset. Let start be the biggest index

in subset. We add to subset all indices, which are bigger than start

and smaller than N. As a result we get several new subsets, which we

enqueue.

3. Repeat step 2 until the queue is empty.

Here is how the implementation of the new algorithm looks like:

using System;
using System.Collections.Generic;

public class Subsets
{
 static string[] words = { "ocean", "beer", "money",
 "happiness" };

 static void Main()
 {
 Queue<List<int>> subsetsQueue = new Queue<List<int>>();
 List<int> emptySet = new List<int>();
 subsetsQueue.Enqueue(emptySet);
 while (subsetsQueue.Count > 0)
 {
 List<int> subset = subsetsQueue.Dequeue();
 Print(subset);
 int start = -1;
 if (subset.Count > 0)
 {
 start = subset[subset.Count - 1];

790 Fundamentals of Computer Programming with C#

 }
 for (int i = start + 1; i < words.Length; i++)
 {
 List<int> newSubset = new List<int>();
 newSubset.AddRange(subset);
 newSubset.Add(i);
 subsetsQueue.Enqueue(newSubset);
 }
 }
 }

 static void Print(List<int> subset) {
 Console.Write("[");
 for (int i=0; i<subset.Count; i++) {
 int index = subset[i];
 Console.Write("{0} ", words[index]);
 }
 Console.WriteLine("]");
 }
}

If we run the program we will get the following correct result:

[]
[ocean]
[beer]
[money]
[happiness]
[ocean beer]
[ocean money]
[ocean happiness]
[beer money]
[beer happiness]
[money happiness]
[ocean beer money]
[ocean beer happiness]
[ocean money happiness]
[beer money happiness]
[ocean beer money happiness]

Sorting Students

It is given a text file, containing the data of a group of students and

courses which they attend, separated by |. The file looks like this:

Chapter 19. Data Structures and Algorithm Complexity 791

Chris | Jones | C#
Mia | Smith | PHP
Chris | Jones | Java
Peter | Jones | C#
Sophia | Wilson | Java
Mia | Wilson | C#
Mia | Smith | C#

Write a program printing all courses and the students, who have joined

them, ordered by last name, and then by first name (if the last names

match).

We can implement the problem using a hash-table, which will hold a list of

students by a course name. We are choosing a hash-table, because we can

quickly search by course name in it.

In order to meet the requirements for an order by name and surname, we are

going to sort the particular list of students from each course, before we

print it. Another option is to use SortedSet<T> for the students attending

each course (because it is internally sorted), but since one can have students

with the same name, we have to use SortedSet<List<String>>. It becomes

too complicated. We choose the easier way – using List<Student> and

sorting it before we print it.

In any case we will have to implement the IComparable interface so we can

define the order of the elements of type Student according to the task

requirements. It is important to firstly compare the family names and if they

are the same to compare the first names. We remind that in order to sort the

elements of a given class it is explicitly necessary to define the logic of their

order. In .NET Framework this is done by the IComparable<T> interface (or

through lambda functions like we shall see in the chapter “Lambda
Expressions and LINQ”). Let’s define the class Student and implement

IComparable<Student>. We get something like this:

public class Student : IComparable<Student>
{
 private string firstName;
 private string lastName;

 public Student(string firstName, string lastName)
 {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public int CompareTo(Student student)
 {

792 Fundamentals of Computer Programming with C#

 int result = lastName.CompareTo(student.lastName);
 if (result == 0)
 {
 result = firstName.CompareTo(student.firstName);
 }
 return result;
 }

 public override String ToString()
 {
 return firstName + " " + lastName;
 }
}

Now we are able to write the code, which reads the students and their

courses and stores them in a hash-table, which keeps a list of students

by a course name (Dictionary<string, List<Student>>). And then it is

easy – we iterate over the courses, sort the students and print them:

// Read the file and build the hash-table of courses
Dictionary<string, List<Student>> courses =
 new Dictionary<string, List<Student>>();
StreamReader reader = new StreamReader("Students.txt");
using (reader)
{
 while (true)
 {
 string line = reader.ReadLine();
 if (line == null)
 {
 break;
 }
 string[] entry = line.Split(new char[] { '|' });
 string firstName = entry[0].Trim();
 string lastName = entry[1].Trim();
 string course = entry[2].Trim();
 List<Student> students;
 if (! courses.TryGetValue(course, out students))
 {
 // New course -> create a list of students for it
 students = new List<Student>();
 courses.Add(course, students);
 }
 Student student = new Student(firstName, lastName);
 students.Add(student);

Chapter 19. Data Structures and Algorithm Complexity 793

 }
}

// Print the courses and their students
foreach (string course in courses.Keys)
{
 Console.WriteLine("Course " + course + ":");
 List<Student> students = courses[course];
 students.Sort();
 foreach (Student student in students)
 {
 Console.WriteLine("\t{0}", student);
 }
}

The above code first parses all the lines consecutively by splitting them by a

vertical bar "|". Secondly it cleans the spaces from the beginning and the end.

After storing every student’s information, it is checked in the hash-table

whether its course exists. If the course has been found, the student is added

to the list of the students of this course. Otherwise, a new list is created and

the student is added to it. Then the list is added in the hash-table using the

course name as a key.

Printing the courses and students is not difficult. All keys are extracted

from the hash-table. These are the names of the courses. For each course its

students' list is extracted, sorted and printed. The sorting is made by the

built-in method Sort() using the comparison method CompareTo(…) from the

interface IComparable<T> as defined in the class Student (comparison firstly

by family name, and if they are the same, comparison by first name). At the

end the sorted students are printed by the overridden virtual method

ToString(). Here is how the output of the upper program looks:

Course C#:
 Chris Jones
 Peter Jones
 Mia Smith
 Mia Wilson
Course PHP:
 Mia Smith
Course Java:
 Chris Jones
 Sophia Wilson

794 Fundamentals of Computer Programming with C#

Sorting a Phone Book

It is given a text file, containing people’s names, their city names and

phone numbers. The file looks like this:

Kenneth | Virginia Beach | 1-541-754-3010
Paul | San Antonio | 1-535-675-6745
Mary | Portland | 1-234-765-1983
Laura | San Antonio | 1-454-345-2345
Donna | Virginia Beach | 1-387-387-2389

Write a program which prints all the city names in an alphabetical order

and for each one of them prints all people’s names in alphabetical order

and their corresponding phone number.

The problem can be solved in many ways, for example we sort by two criteria:

firstly by city name and secondly by person name and then we print the

phone book.

However, let’s solve the problem without sorting, but by using the standard

data structures in .NET Framework. We want the city names to be sorted. This

means that it is best to use a data structure, which internally keeps the

elements sorted. Such as, for example, a balanced search tree –

SortedSet<T> or SortedDictionary<K,T>. Since every record from the

phone book contains beside a city name – other data, it is more convenient to

have a SortedDictionary<K,T>, which keeps a list of people’s names and

their phone numbers. We want the list of the people’s names from every city

to be sorted in alphabetical order by name. Hence, we can use the data

structure SortedDictionary<K,T> again. The key will be the name of the

person and its value will be his phone number.

At the end we get the nested structure SortedDictionary<string,
SortedDictionary<string, string>>. Here is a sample implementation,

which shows how we can solve the problem using this structure:

// Read the file and build the phone book
SortedDictionary<string, SortedDictionary<string, string>>
 phonesByTown = new SortedDictionary<string,
 SortedDictionary<string, string>>();
StreamReader reader = new StreamReader("PhoneBook.txt");
using (reader)
{
 while (true)
 {
 string line = reader.ReadLine();
 if (line == null)
 {
 break;

Chapter 19. Data Structures and Algorithm Complexity 795

 }
 string[] entry = line.Split(new char[]{'|'});
 string name = entry[0].Trim();
 string town = entry[1].Trim();
 string phone = entry[2].Trim();

 SortedDictionary<string, string> phoneBook;
 if (! phonesByTown.TryGetValue(town, out phoneBook))
 {
 // This town is new. Create a phone book for it
 phoneBook = new SortedDictionary<string, string>();
 phonesByTown.Add(town, phoneBook);
 }
 phoneBook.Add(name, phone);
 }
}

// Print the phone book by towns
foreach (string town in phonesByTown.Keys)
{
 Console.WriteLine("Town " + town + ":");
 SortedDictionary<string, string> phoneBook =
 phonesByTown[town];
 foreach (var entry in phoneBook)
 {
 string name = entry.Key;
 string phone = entry.Value;
 Console.WriteLine("\t{0} - {1}", name, phone);
 }
}

If we execute this sample code with input – the sample phone book, we will

get the expected result:

Town Portland:
 Mary - 1-234-765-1983
Town San Antonio:
 Laura - 1-454-345-2345
 Paul - 1-535-675-6745
Town Virginia Beach:
 Donna - 1-387-387-2389
 Kenneth - 1-541-754-3010

796 Fundamentals of Computer Programming with C#

Searching in a Phone Book

Here is another problem, so we can strengthen the way, in which we think in

order to choose appropriate data structures. A phone book is stored in a

text file, containing names of people, their city names and phone

numbers. People’s names can be in the format first name or nickname or

first name + last name or first name + surname + last name. The file could

have the following look:

Kevin Clark | Virginia beach | 1-454-345-2345
Skiller | San Antonio | 1-566-533-2789
Kevin Clark Jones | Portland | 1-432-556-6533
Linda Johnson | San Antonio | 1-123-345-2456
Kevin | Phoenix | 1-564-254-4352
Kevin Garcia | Virginia Beach | 1-445-456-6732
Kevin | Phoenix | 1-134-654-7424

It is possible several people to be given under the same name or even the

same city. It is possible someone to have several phone numbers. In this

case he is given several times in the input file. Phone book could be huge

(up to 1,000,000 records).

A file holding a sequence of queries is given. The queries are two types:

- Search by name / nickname / surname / last name. The query

looks like this: list(name).

- Search by name / nickname / surname / last name + city name.

The query looks like this: find(name, town).

Here is a sample query file:

list(Kevin)
find(Angel, San Antonio)
list(Linda)
list(Clark)
find(Jones, Phoenix)
list(Grandma)

Write a program, which by given phone book and query file executes and

respond to all the queries. For each query a list of records in the phone

book has to be printed or the message "Not found", if the query cannot find

anything. Queries could be a large number, for example 50,000.

This problem is not as easy as the previous ones. One easy to implement

solution could be to scan the entire phone book for every query and

extract all records in which there is a match with the searched information.

But this will work slowly, because the records and queries could be a lot. It

is necessary to find a way for a quick search without scanning the entire

phone book every time.

Chapter 19. Data Structures and Algorithm Complexity 797

In paper phone books the numbers are given by the people’s name, sorted

in alphabetical order. Sorting will not help us, because someone can search

by first name, other – by last name, third – by nickname and city name. We

have to search by any of the above at the same time. The question is how do

we do it?

If we think a bit it will occur to us that the problem requires searching by

any of the words, which can be seen at the first column of the phone book

and eventually by the combination of a word from the first column and a town

from the second one. We know that the fastest search is implemented with a

hash-table. So far so good, but what are we going to keep as a key and

value in the hash-table?

What if we use several hash-tables: one for searching a word from the first

column, another for searching in the second column, third for searching by

city and so on? If we think a bit more, we will ask ourselves the question –

why do we need several hash-tables? Can’t we search in one common

hash-table? If we have a name "Peter Jones", we will store his phone

number under the keys "Peter" and "Jones". If someone searches by any of

these keys, he will find Peter’s phone number.

So far so good, but how do we search by both first name and city name,

for example "Peter from Virginia Beach"? It is possible firstly to find all with a

name "Peter" and then to print those who are from Virginia Beach. This will

work, but if there are a lot of people named Peter, searching will work slowly.

Then why don’t we make a hash-table with a key name of a person and

value another hash-table, which by city name will return a list of phone

numbers? This could work. We have done something similar in the previous

task, haven’t we?

Can we come up with something smarter? Can’t we just put the phone

numbers of all the people named Peter from Virginia Beach under a key

"Peter from Virginia Beach" in the main hash-table in the phone book? It

seems this could solve our problem and we will use only one hash-table for all

the queries.

Using the last idea, we could invent the following algorithm: we read line by

line from the phone book and for each word from the name of a person

d1, d2, …, dk and for each city name t we make new records in the

phonebook hash-table by the following keys: d1, d2, …, dk, "d1 from t",

"d2 from t", …, "dk from t". Now it is guaranteed we could search by any of

a person’s names as well as name and town. In order to search without

bothering about letter case we can transform the words to lowercase in

advance. After that the searching is trivial – we just search in the hash-table

by a given word d or if a town t is given "d from t". Since we could have

many phone numbers under the same key, for a value in the hash-table we

should use a list of strings (List<string>).

Let’s skim through an implementation of the described algorithm:

798 Fundamentals of Computer Programming with C#

class PhoneBookFinder
{
 const string PhoneBookFileName = "PhoneBook.txt";
 const string QueriesFileName = "Queries.txt";

 static Dictionary<string, List<string>> phoneBook =
 new Dictionary<string, List<string>>();

 static void Main()
 {
 ReadPhoneBook();
 ProcessQueries();
 }

 static void ReadPhoneBook()
 {
 StreamReader reader = new StreamReader(PhoneBookFileName);
 using (reader)
 {
 while (true)
 {
 string line = reader.ReadLine();
 if (line == null)
 {
 break;
 }
 string[] entry = line.Split(new char[]{'|'});
 string names = entry[0].Trim();
 string town = entry[1].Trim();

 string[] nameTokens =
 names.Split(new char[] {' ', '\t'});
 foreach (string name in nameTokens)
 {
 AddToPhoneBook(name, line);
 string nameAndTown = CombineNameAndTown(town, name);
 AddToPhoneBook(nameAndTown, line);
 }
 }
 }
 }

 static string CombineNameAndTown(string town, string name)
 {

Chapter 19. Data Structures and Algorithm Complexity 799

 return name + " from " + town;
 }

 static void AddToPhoneBook(string name, string entry)
 {
 name = name.ToLower();
 List<string> entries;
 if (! phoneBook.TryGetValue(name, out entries))
 {
 entries = new List<string>();
 phoneBook.Add(name, entries);
 }
 entries.Add(entry);
 }

 static void ProcessQueries()
 {
 StreamReader reader = new StreamReader(QueriesFileName);
 using (reader)
 {
 while (true)
 {
 string query = reader.ReadLine();
 if (query == null)
 {
 break;
 }
 ProcessQuery(query);
 }
 }
 }

 static void ProcessQuery(string query)
 {
 if (query.StartsWith("list("))
 {
 int listLen = "list(".Length;
 string name = query.Substring(
 listLen, query.Length-listLen-1);
 name = name.Trim().ToLower();
 PrintAllMatches(name);
 }
 else if (query.StartsWith("find("))
 {

800 Fundamentals of Computer Programming with C#

 string[] queryParams = query.Split(
 new char[] { '(', ' ', ',', ')' },
 StringSplitOptions.RemoveEmptyEntries);
 string name = queryParams[1];
 name = name.Trim().ToLower();
 string town = queryParams[2];
 town = town.Trim().ToLower();
 string nameAndTown =
 CombineNameAndTown(town, name);
 PrintAllMatches(nameAndTown);
 }
 else
 {
 Console.WriteLine(
 query + " is invalid command!");
 }
 }

 static void PrintAllMatches(string key)
 {
 List<string> allMatches;
 if (phoneBook.TryGetValue(key, out allMatches))
 {
 foreach (string entry in allMatches)
 {
 Console.WriteLine(entry);
 }
 }
 else
 {
 Console.WriteLine("Not found!");
 }
 Console.WriteLine();
 }
}

While reading the phone book line by line and splitting by the vertical bar "|",

we extract the three columns (names, city name and phone number). After

that the names are split and each word is added in the hash-table.

Additionally we add each word, combined with the city name (so that we can

search by name + city name).

The second part of the algorithm is the command execution. In this part

each line from the query file is read and processed. The process includes

parsing the command, extracting the name or name and city name and

Chapter 19. Data Structures and Algorithm Complexity 801

searching. The search is directly done by using the hash-table, which is

created after reading the phone book file.

To be able to ignore the difference between lowercase and uppercase, all keys

in the hash-table are added as lowercase. When we search, we do it

lowercase too.

Choosing a Data Structure – Conclusions

By the many examples it is clear that the choice of an appropriate data

structure is highly dependable on the specific task. Sometimes data

structures have to be combined or we have to use several of them

simultaneously.

What data structure should we pick mostly depends on the operations we

will perform, so always ask yourselves "what operations should the

structure, I need, perform efficiently". If you are familiar with the operations,

you can easily conform which structure does them most efficiently and at the

same time is easy and handy.

In order to efficiently choose an appropriate data structure, you should firstly

invent the algorithm, which you are going to implement, and then look for

an appropriate data structures for it.

Always go from the algorithm to the data structures, never

backwards.

External Libraries with .NET Collections

It is a well-known fact that the standard data structures in .NET Framework

System.Collections.Generic have pretty poor functionality. It lacks

implementations of basic concepts in data structures such as multi-sets,

priority queues, for which there should be standard classes as well as basic

system interfaces.

When we have to use a special data structure, which is not standardly

implemented in .NET Framework, we have two options:

- First option: we implement the data structure ourselves. This gives

us flexibility, because the implementation will completely meet our

needs, but it takes a lot of time and it has a great chance of making

mistakes. For example, if one has to qualitatively implement a balanced

tree, this may take an experienced software developer several days

(along with the tests). If the same is implemented by inexperienced

software developer it will take a lot more time and most probably there

will be errors in the implementation.

- Second option (generally preferable): find an external library, which

has a full implementation of the needed functionality. This approach has

an advantage of saving us time and troubles, because in most cases the

external libraries of data structures are well-tested. They have been

802 Fundamentals of Computer Programming with C#

used for years by thousands of software developers and this makes

them mature and reliable.

Power Collections for .NET

One of the most popular and richest libraries with efficient implementations of

the fundamental data structures for C# and .NET software developers is the

open-source project "Wintellect’s Power Collections for .NET" –

http://powercollections.codeplex.com. It provides free, reliable, efficient, fast

and handy implementations of the following commonly used data structures,

which are missing or partly-implemented in .NET framework:

- Set<T> – set of elements, implemented with a hash-table. It

efficiently implements the basic operations over sets: adding, deleting

and searching an element as well as union, intersection, difference

between sets and many more. By functionality and way of work the

class looks like the standard class HashSet<T> in .NET Framework.

- Bag<T> – multi-set of elements (set with duplicates), implemented

with a hash-table. It efficiently implements all basic operations over

multi-sets.

- OrderedSet<T> – ordered set of elements (without duplicates),

implemented with a balanced search tree. It efficiently implements all

basic operations over sets and when traversing through its elements it

returns them in ascending order (according to the used comparer). It

allows a fast extraction of subsets of values in a given interval.

- OrderedBag<T> – ordered multi-set of elements, implemented with a

balanced search tree. It efficiently implements all basic operations

over multi-sets and when going through all its elements it returns them

in ascending order (according to the used comparer). It allows a quick

extraction of subsets of values in a given interval.

- MultiDictionary<K,T> – it is a hash-table allowing key duplicates.

For every key there is a collection of values stored, not one single value.

- OrderedDictionary<K,T> – it represents a dictionary, implemented

with a balanced search tree. It allows a fast search by key and when

going through its elements it returns them in ascending order. It

enables us to quickly extract the values from a given key range. By

functionality and way of work the class looks like the standard class
SortedDictionary<K,T> in .NET Framework.

- Deque<T> – represents efficient implementation of a queue with two

ends (double ended queue), which practically combines the data

structures stack and queue. It allows efficient addition, extraction and

deletion of elements in both ends.

- BagList<T> – list of elements, accessed through index, which

allows a quick insertion and deletion of an element from a particular

position. The operations index accessing, adding, inserting at position

http://powercollections.codeplex.com/

Chapter 19. Data Structures and Algorithm Complexity 803

and removing an element from position have a complexity O(log N). The

implementtation is with a balanced tree. The structure is a good

alternative of List<T>, in which the insertion and removal of element at

a particular position takes linear time because of the need of the

replacement of linear number of elements to the left or right.

We let the reader the opportunity to download the library "Power

Collections for .NET" from its site and to experiment with it. It can be

very useful when you solve some of the problems from the exercises.

C5 Collections for .NET

Another very powerful library of data structures and collection classes is “The

C5 Generic Collection Library for C# and CLI” (www.itu.dk/research/c5/).

It provides standard interfaces and collection classes like lists, sets, bags,

multi-sets, balanced trees and hash tables, as well as non-traditional

data structures like “hashed linked list”, “wrapped arrays” and “interval
heaps”. It also describes a set of collection-related algorithms and patterns,

such as “read-only access”, “random selection”, “removing duplicates”, etc.
The library comes with solid documentation (a book of 250 pages). The C5

collections and the book about them are the ultimate resource for data

structure developers.

Exercises

1. Hash-tables do not allow storing more than one value in a key. How can

we get around this restriction? Define a class to hold multiple values in a

hash-table.

2. Implement a data structure, which can quickly do the following two

operations: add an element and extract the smallest element. The

structure should accept adding duplicated elements.

3. It is given a text file students.txt containing information about students

and their specialty in the following format:

Steven Davis | Computer Science
Joseph Johnson | Software Engeneering
Helen Mitchell | Public Relations
Nicolas Carter | Computer Science
Susan Green | Public Relations
William Johnson | Software Engeneering

Using SortedDictionary<K,T> print on the console the specialties in an

alphabetical order and for each of them print the names of the students,

firstly sorted by family name and secondly – by first name, as shown:

Computer Sciences: Nicolas Carter, Steven Davis
Public Relations: Susan Green, Helen Mitchell

http://www.itu.dk/research/c5/

804 Fundamentals of Computer Programming with C#

Software Engeneering: Joseph Johnson, William Johnson

4. Implement a class BiDictionary<K1,K2,T>, which allows adding triplets

{key1, key2, value} and quickly search by either of the keys key1, key2

as well as searching by combination of the both keys. Note: Adding many

elements with the same keys is allowed.

5. A big chain of supermarkets sell millions of products. Each of them has a

unique number (barcode), producer, name and price. What data structure

could we use in order to quickly find all products, which cost between

5 and 10 dollars?

6. A timetable of a conference hall is a list of events in a format [starting

date and time; ending date and time; event’s name]. What data

structure could we to be able to quickly add events and quickly check

whether the hall is available in a given interval [starting date and

time; ending date and time]?

7. Implement the data structure PriorityQueue<T>, which offers quick

execution of the following operations: adding an element, extracting

the smallest element.

8. Imagine you develop a search engine, which gathers all the

advertisements for used cars in ten websites for the last few years. After

that the search engine allows a quick search by one or several criteria: a

brand, model, color, year of production and price. You are not allowed to

use database management system (like SQL Server, MySQL or MongoDB)

and you must implement your own indexing in the memory, without storing

it to the hard disk and without using LINQ. When one searches by price

minimal and maximal price is given. When one searches by year of

production a starting and ending years are given. What data structures

would you use in order to ensure fast searching by one or several criteria?

Solutions and Guidelines

1. You can use Dictionary<key, List<value>> or create your own class

ValuesCollection, which can take care of the values with the same key

and use Dictionary<key, ValuesCollection>.

2. You can use SortedSet<List<int>> and its operations Add() and

First(). SortedSet<T> keeps the elements in it sorted and can accept

external IComparer<T>.

The problem has a more efficient solution though – the data structure

called “binary heap”. You can read about it on Wikipedia:

http://en.wikipedia.org/wiki/Binary_heap.

3. The task is similar to the one from the section "Sorting Students".

4. One of the solutions to this task is to use two instances of the class

Dictionary<K,T> for each of the two keys and when you add or remove

http://en.wikipedia.org/wiki/Binary_heap

Chapter 19. Data Structures and Algorithm Complexity 805

an element from BiDictionary<K1,K2,T>, you add or remove the element

from the two hash-tables correspondingly. When you search by first or

second key, you should check the elements in the first or the second hash-

table respectively. When you search by two keys, you could search in the

two hash-tables separately and intersect the matching subsets.

Another, simpler approach is to hold 3 hash tables: Dictionary<K1,T>,

Dictionary<K2,T> and Dictionary<Tuple<K1,K2>,T>. The system

generic class Tuple<K1,K2> can be used to combine two keys and use it as

a composite key.

5. If we keep the products sorted by price in an array (for example in

List<Product>, which we firstly fill and then sort), in order to find all the

products which cost between 5 and 10 bucks we can use a binary search

twice. Firstly we can find the smallest index start, in which lies a product

costing at least 5 bucks. After that we can find the biggest index end, in

which lies a product costing at most 10 bucks. All the products at positions

in the interval [start … end] will cost between 5 and 10 dollars. If you are

interested in the algorithm binary search in a sorted array you could inform

yourself reading Wikipedia: http://en.wikipedia.org/wiki/Binary_search.

Generally the approach using a sorted array and binary search in it works

excellent, but there is a disadvantage: the addition in a sorted array is a

very slow operation, because it requires moving a linear number of

elements with one position ahead of the inserted new element.

To overcome this we can use the class SortedSet<T>. It supports fast

insertion keeping the elements in a sorted order. It has an operation

SortedSet<T>.GetViewBetween(lowerBound, upperBound) that returns a

subset of the elements in certain range (interval).

You may also use the class OrderedSet<T> from "Wintellect’s Power

Collections for .NET" library (http://www.codeplex.com/PowerCollections)

which is more powerful and more flexible. It has a method for extracting a

sub-range of values: OrderedSet<T>.Range(from, fromInclusive, to,

toInclusive).

6. We can create two sorted arrays (List<Event>): the first will keep the

events sorted in ascending order by starting date and time; the second

will keep the same events sorted by ending date and time. By using

binary search we can find all the events which can be partly or fully found

between the two moments of time [start, end] by doing the following:

- Find the set S of all events starting after the moment start (using

binary search).

- We can find all the set E of all events ending before the moment end

(using binary search).

- Intersect these two sets: C = S ∩ E. If the intersection S of the two

sets of events have common elements (S in non-empty set), then in

http://en.wikipedia.org/wiki/Binary_search
http://www.codeplex.com/PowerCollections

806 Fundamentals of Computer Programming with C#

the searched interval [start … end] the hall is occupied. Otherwise it

is available.

This solution has a disadvantage: adding elements in the sorted arrays

will be slow. We should either add all elements initially and then sort the

two arrays and never change them afterwards or try to keep the arrays

sorted when adding new elements (which will be slow).

Another solution, which is easier to implement and more efficient, is to

use two instances of the class OrderedBag<T> from the "Power Collections

for .NET" library (the first with event’s start date and time as a key and

the second with event’s end date and time as a key). The class has

methods to extract the subsets S and E: RangeFrom(from,

fromInclusive) and RangeTo(to, toInclusive). We still will need to

intersect these sets and check whether their intersection is empty or not.

The most efficient solution is to use a data structure called “interval tree”.
Read more in Wikipedia: http://en.wikipedia.org/wiki/Interval_tree. You

may find an open source C# interval tree implementation in CodePlex:

http://intervaltree.codeplex.com.

7. Since there is no internal implementation of the data structure "priority

queue" in .NET, you can use the data structure OrderedBag<T> from

Wintellect’s Power Collections. It had Addſ…ƀ and GetFirst() and

RemoveFirst() methods. You can read more about priority queues on

Wikipedia: http://en.wikipedia.org/wiki/Priority_Queue.

The classic, simplest efficient priority queue implementation the data

structure “binary heap”: http://en.wikipedia.org/wiki/Binary_heap.

An efficient ready-to-use C# implementation of priority queue is the class

IntervalHeap<T> in the C5 Collections: http://www.itu.dk/research/c5/.

8. For searching by brand, model and color we can use one hash-table

per each, which will search by a given criteria and return a list of cars

(Dictionary<string, List<Car>>).

For searching by year of production and price range we can use lists

List<Car>, sorted in ascending order (and binary search).

To search by several criteria at once we can extract the cars' subsets by

the first criteria, after that the cars' subsets by the second criteria

and so on. At the end we can find the intersection of the sets.

Intersection of two sets can be found by looking for every element in the

smaller set in the bigger set. The easiest way is Car to implement
Equals() and GetHashCode() and after that to use the class

HashSet<Car> for set intersections.

http://en.wikipedia.org/wiki/Interval_tree
http://intervaltree.codeplex.com/
http://powercollections.codeplex.com/
http://en.wikipedia.org/wiki/Priority_Queue
http://en.wikipedia.org/wiki/Binary_heap
http://www.itu.dk/research/c5/

